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Many real-world complex systems, when hitting a tipping point, undergo irreversible sudden shifts that
can eventually take a great toll on humanity and the natural world, such as ecosystem collapses, disease
outbreaks, etc. Previous work has adopted approximations to predict the tipping points, but due to the
nature of nonlinearity, this may lead to unexpected errors in predicting real-world systems. Here we obtain
the rigorous bounds of the tipping points for general nonlinear cooperative networks. Our results offer two
rigorous criteria that determine the collapse and survival of such a system. These two criteria are decided by
the combined effect of dynamical parameters and interaction topology.
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Complex systems often have several different states, in
which the whole system behaves differently [1–5].
Predicting tipping points at which the system undergoes
irreversible sudden shifts between these states is of great
significance. These states are equilibria depending on how
the individuals in the system grow, decay, cooperate, and
compete with each other. Mathematically, these equilibria
states are fixed points of a set of nonlinear dynamical
equations determined by the dynamical parameters and the
interaction topology [6].
Typical examples with the potential for tipping points

include gene regulatory networks (GRN), where proteins
act as activators to produce other proteins, epidemiology,
where people spread a disease to each other, and plant-
animal mutualistic networks, where plants provide food to
their animal partners in exchange for pollination or seed
dispersal services [7]. In the latter case, mutualistic net-
works involve dozens or even hundreds of species belong-
ing to two groups: plants and animals, with species in the
same group competing with each other and species from
different groups benefiting from each other. Models of
mutualistic ecological networks are highly complex, and
previous work on the resilience of these systems and their
likelihood to undergo a tipping point have relied on
numerical simulations [8,9].
Thereupon, some studies focus on some simplified

models without considering the competition within each
group. For example, Gao et al. [10] assume that all

regulations are activation type in GRNs; Morone et al.
[11] studied a simplified plant-pollinator network model
with only self-decay and cooperation; in the susceptible-
infected-susceptible (SIS) model, the infection of others
does not reduce one’s probability of being infected, etc.
We use the general term cooperative networks to refer to

such models. In these models, equilibria of the system are
the result of the combined effect of growth, decay and
cooperation. However, even without the competition
term, the complex topology of the interacting network
and nonlinear dynamics still poses a great difficulty.
Scientists seeking tipping points have to adopt approx-
imations, such as using mean-field approximation [12],
second-order mean field under quasilinear assumption [10],
step function approximation [11], and Taylor expansion
[13]. But as is suggested by the famous butterfly effect [14],
nonlinearity indicates that even tiny approximations may
cause unexpected error in the prediction.
With the risk of unexpected errors, people are concerned

when these predictions can be correctly applied [15,16], so
rigorous results are still in dire need. In this Letter, we
obtain the first rigorous bounds of the tipping points for
general cooperative networks. Our theoretical results guar-
antee the survival and collapse of general cooperative
networks, with arbitrary dynamical form and arbitrary
interaction topology.
For a system consisting of components interacting with

each other through a given interaction topology, with
component nodes i; j…, the cooperative dynamics can
be described by the following set of differential equations:

dxi
dt

¼ F

�
xi;

XN
j¼1

AijGðxi; xjÞ
�
; ð1Þ
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where Aij is the adjacency matrix of the interaction net-
work. Aij > 0 if component j interacts with component i,
otherwise Aij ¼ 0. One can choose an appropriate function
F so as to represent different cooperative dynamics
(examples are shown in Table I). Note that this model
can represent many cooperative systems that have weighted
or directed interaction networks, including systems with
self-edges. For instance, in GRNs, interaction strength can
be described by the weights of edges, unidirectional
interaction can be represented by directed edges, a pro-
moter can promote the generation of its own products, and
the form of the dynamical functions stays unchanged in
such cases.
The equations describe the dynamics of each component

i. Here the second term ui ¼
P

N
j¼1 AijGðxi; xjÞ represents

the total incoming interactions (all supportive effects in
cooperative systems) the component i receives from its
neighbors in the complex network. Here we study dynami-
cal systems that satisfy the following conditions:
(1) Fðx ¼ 0Þ ¼ 0 and limkxk→þ∞dkxk=dt < 0: the com-
ponents’ abundance values do not grow out of nothing and
cannot grow to infinity. (2) Fðxi > 0; ui ¼ 0Þ < 0: the
components spontaneously self-decay. (3) ∂F=∂ui ≥ 0:
the incoming interactions support the survival of the
components. (4) ∂G=∂xj ≥ 0, Gðxi; 0Þ ¼ 0: higher abun-
dance of a neighboring component means stronger support.
Among them, conditions 1 and 2 are generally true for

many dynamical systems originating from natural proc-
esses, and they guarantee the system has no trivial nonzero
states. Because if a system does not satisfy conditions 1 and
2, it may have a nonzero solution even if there are no
cooperative dynamics. Meanwhile, the cooperative dynam-
ics we focus on in this Letter are represented by conditions
3 and 4. These two conditions guarantee that the inter-
actions from the network can support the survival of a
component, and further result in positive feedback loops,
enhancing nonlinear dynamics in the system. Now, the
key question is, in this cooperative model, under what

environment will such systems collapse, i.e., under what
circumstances does the system have a nonzero fixed point?
In a nutshell, the final state of a system is the result of

conflicting interactions between two effects: the self-
decaying effect and the incoming supports from the net-
work. We can imagine that a difficult environment would
cause self-decay to be too fast, or support to be insufficient,
meaning that the whole system can only stay in the zero-
abundance state. However, increasing the connectivity or
coupling strength in the underlying complex network may
allow the system to survive (fixed point at nonzero
abundance). The self-decay term is only related to param-
eters in the dynamical equations, while the incoming
cooperative supports are related to both the interaction
topology and the dynamics.
To obtain the rigorous bounds of tipping points, our idea

is to study the sufficient or necessary conditions for the
original heterogenous system to have a nonzero fixed point.
In simple terms, one needs to find simple hypothetical
systems, which are analytically solvable systems, that are
strictly more fragile or robust than the original system.
The first key question is what network topology allows
the dynamical equation to be solved analytically. The most
straightforward answer to that is a symmetrical network, in
which all nodes are identical to each other. The tipping
points of this hypothetical system can be solved easily.
Compared with the original heterogenous system, the
heterogeneity of the original networks will induce an
uncertainty to the tipping points of this hypothetical
symmetrical system. But the maximum boundaries of
uncertainty are strictly bounded by mathematical properties
of the network structure. In the case of a symmetrical
network, we can replace xi, xj with x and

P
j Aij with λ,

then the fixed-point solution of Eq. (1) becomes the
following one-variable equation:

Fðx; λGðx; xÞ; α; β; γ…Þ ¼ 0: ð2Þ

TABLE I. Summary of three cooperative systems analyzed in this Letter. GRN consists of a set of interactions of proteins in the cell to
control the gene expression levels of activators. xi ≥ 0 is the concentration of activator i. The first term determines the degradation and B
is the degradation rate, whereas the parameter h is the Hill coefficient that quantifies cooperativity of the gene regulation [10,17]. A
mutualistic network such as that relating plants and their insect pollinators is a system where the survival of species benefits from the
survival of other species. xi ≥ 0 is the abundance of species i, d ≥ 0 is the death rate, s > 0 is a self-limitation parameter, α > 0 is the
half-saturation constant, and γ > 0 is the mutualistic interaction efficiency [11]. Susceptible-infected-susceptible epidemic process
model consists of two types of nodes: susceptible (S) or infected (I). Susceptible can become infected through a direct contact with an
infected, while the infected can recover and become susceptible again. Here 0 ≤ xi ≤ 1 is the probability that node i is infected, β > 0 is
the infection rate [18].

Model Equation Fðxi; uiÞ Gðxi; xjÞ
GRN ðdxi=dtÞ¼−Bxiþ

P
N
j¼1Aij½xhj =ð1þxhj Þ� −Bxi þ ui xhj =ð1þ xhj Þ

Plant-pollinator network ðdxi=dtÞ¼−xid−x2i sþ½ðγPN
j¼1AijxjÞ=ðαþ

P
N
j¼1AijxjÞ�xi −xid−x2i sþ½γui=ðαþuiÞ�xi xj

SIS epidemic process ðdxi=dtÞ¼−xiþβ
P

N
j¼1Aijð1−xiÞxj −xi þ βui ð1 − xiÞxj
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For convenience, we use SðλÞ to represent a symmetric
network whose weighted in-degree equals λ. Given envi-
ronment parameters ðα; β; γ…Þ, we calculate λ� as a
function of ðα; β; γ…Þ, which is the minimal value of λ
that allows SðλÞ to survive, i.e., allows Eq. (2) to have at
least one positive solution. To assist intuitive understanding,
we interpret λ� as the effective difficulty of the environment,
see Fig. 1 for illustration. As we proved in the Supplemental
Material [19], S½kmaxðAÞ� is strictly more fragile (see
Proposition 1 in the Supplemental Material [19]) and
S½ρðAÞ� is strictly more robust (see Proposition 2 in
Supplemental Material [19]) than the original heterogenous
network, respectively. This result offers us two simple and
easily applicable criteria: (1) If λ� ≤ kmaxðAÞ, the hetero-
genous system will survive; (2) if λ� ≥ ρðAÞ, the hetero-
genous system will collapse. [The second criterion does
not stand when Gðxi; xjÞ ≠ fðxiÞ · gðxjÞ; we present such
an example in Proposition 3 in the Supplemental
Material [19].)
This also means that all the tipping points of the system

must fall into the region kmaxðAÞ ≤ λ� ≤ ρðAÞ. kmaxðAÞ is
the maximum k coreness of the weighted network [23–25],
defined as the maximum number that allows the existence
of a subgraph in which each node receives at least kmaxðAÞ
weighted incoming edges in total within the subgraph; and
ρðAÞ is the largest eigenvalue of A. In the following, ρðAÞ
and kmaxðAÞ are referred to as ρ and kmax, respectively.
Furthermore, we prove that if one wants to obtain the

upper and lower bounds that are universally available to
the general nonlinear cooperative system, kmax and ρ are
the infimum (the greatest lower bound) and supremum (the
lowest upper bound) of the tipping points, respectively. The
supremum of tipping points λ� ¼ ρ can be reached when

the corresponding symmetric system described by Eq. (2)
undergoes a continuous transition (see Proposition 4 in the
Supplemental Material for details [19]). Here, interestingly,
the tipping points are free of dynamical forms, meaning that
even though the dynamics are unknown, the system can be
controlled effectively through changing the network top-
ology in a way that causes the largest change in ρðAÞ. The
infimum λ� ¼ kmax can be reached when Gðxi; xjÞ is a step
function of xj, which is a commonly used method in
theoretical studies [11,17].
Later we will show through numerical simulations that

existing predictions are likely to misjudge the fate of the
system, and the tipping points sometimes even fall beyond
the rigorous boundaries. This is probably due to the nature
of the nonlinearity that adopting approximations may cause
unexpected errors in predictions. To simplify the applica-
tions, we provide the following simple scheme to assist the
analysis from diverse backgrounds: (1) The first step is to
obtain the one-variable fixed-point equation as Eq. (2) from
the original dynamical equation. (2) The second step is to
obtain the environmental difficulty λ� as a functional form
of dynamical parameters conditioned by Eq. (2). In this
case, the left-hand side of Eq. (2) Fðx; λGðx; xÞ; α; β; γ…Þ
must satisfy simultaneous equations F ¼ 0 and
dF=dx ¼ 0, then λ� can be solved. (3) Step 3 is to apply
our two criteria to the heterogeneous system. To be more
specific, if it is a favorable system, ensure that it runs in the
region where λ� ≤ kmax, so to guarantee the survival;
otherwise, we make the system stay in the region where
λ� ≥ ρ to ensure the collapse.
In the following, we show numerical simulations for the

three models introduced in Table I. These results also serve
as exemplar protocols for the analysis of general nonlinear
cooperative systems.
GRNs.—First let us consider the example of GRNs [10].

To study such a heterogeneous system, the first step is to
rewrite the dynamical equation into a one-variable fixed-
point equation like Eq. (2),

−Bxþ λ
xh

1þ xh
¼ 0: ð3Þ

Obviously, when h < 1, a positive solution always exists,
because the left-hand side is always larger than zero when
x → 0. When h ≥ 1, the effective difficulty λ� is the
minimal λ that allows for positive x. We apply step 2 of
the scheme and obtain

λ� ¼ Bhðh − 1Þ1h−1: ð4Þ

Here h is fixed by the details of the biological regulation,
whereas B changes depending on external stress and living
conditions. Applying our criteria, given a real heterogenous
network, we can assert the following: (1) In the region
λ� ≤ kmax, i.e., B ≤ kmax=½hðh − 1Þð1=hÞ−1�, the activators

0 1 2 3 4

(a) (b)

Survival state
Collapse state
Unstable fixed point

Survival state
Collapse state
Unstable fixed point

FIG. 1. Illustrations of effective difficulty λ� and stability of a
dynamical system. (a) Gauge of environment difficulty using a
series of symmetric networks. Red line indicates collapse state of
the system, while blue line indicates survival state of the system.
Note that λ� is not necessarily an integer, since edges of networks
can beweighted, and a symmetric network is not necessarily a fully
connected network. (b) Emergence of a nonzero fixed point when
we increase λ. This corresponds to the emergence of a survival state
at λ� in (a). The red dot in the horizontal axis represents the collapse
state; the blue dot represents the survival state; black circle shows
an unstable fixed point; and dotted, dashed, and solid lines show the
dynamical function when λ increases.
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have positive concentrations, and the transcriptional regu-
lation process works. (2) In the region λ� ≥ ρ, i.e.,
B ≥ ρ=½hðh − 1Þð1=hÞ−1�, the concentration of all the acti-
vators fall to zero.
Fixing parameter h, for each B, we can obtain the

corresponding average abundance of the original complex
system hx�i through numerical simulations and then find
the tipping point ðh; BÞ at which the corresponding hx�i
just collapses to zero. A numerical simulation on a GRN for
E. coli [26] is shown in Fig. 2. The actual tipping points
(solid line) lie in the gap between our collapse region (red)
and survival region (blue), showing our results are correct.
It can be seen that the tipping point changes with the

onset of nonlinearity. The solid line slowly approaches the
blue border λ� ¼ kmax [when h → þ∞, Gðxi; xjÞ is a
step function of xj] from the red border λ� ¼ ρ [when
h ¼ 1, the symmetric system described by Eq. (3) under-
goes a continuous transition]. As a comparison, we also
plot the state-of-the-art prediction of tipping points by
Ref. [10] (dotted line).

Plant-pollinator network.—Next, we study the plant-
pollinator network we briefly introduced in Table I.
Although these systems have been described by a set of
differential equations containing both the cooperative term
between sets and the interspecific competition term within
sets [27], here we omit the latter for the sake of analytical
treatment as in Ref. [11]. The corresponding one-variable
equation of such systems is

−xd − x2sþ γλx2

αþ λx
¼ 0; ð5Þ

which has an effective environment difficulty

λ� ¼ αs

ð ffiffiffi
γ

p −
ffiffiffi
d

p Þ2 : ð6Þ

Applying the criteria, we obtain the following conclu-
sions for heterogenous plant-pollinator networks: (1) If
λ� ≤ kmax, i.e., γ ≥ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αs=kmax

p þ ffiffiffi
d

p Þ2, the species can
coexist. (2) If λ� ≥ ρ, i.e., γ ≤ ð ffiffiffiffiffiffiffiffiffiffi

αs=ρ
p þ ffiffiffi

d
p Þ2, all species

go extinct.
For d ¼ 0, the one-variable system described by Eq. (5)

undergoes a continuous transition; this shows the original
heterogenous system has a continuous transition around
ρðAÞ ¼ αs=γ. Meanwhile, when d > 0, the system under-
goes a discontinuous transition. Here the tipping points
form a hypersurface in four-dimensional space. In Figs. 3(a)
and 3(b), we show the results on a pollination network (see
Fig. 3 for detailed description). To better illustrate this
surface on a 2D graph, we fix s ¼ 1 and α ¼ 1 (one can
choose to fix other parameters) and plot the tipping point γ�
in Fig. 3(a) and its corresponding effective difficulty λ�c in
Fig. 3(b) as function of parameter d from 0 to 2.
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FIG. 3. Tipping points in a mutualistic network of species interactions. Similar to Fig. 2, the solid line shows the actual tipping points
obtained from numerical simulations. Red and blue areas show the collapse region where γ ≤ ð ffiffiffiffiffiffiffiffiffiffi

αs=ρ
p þ ffiffiffi

d
p Þ2 and the survival region

where γ ≥ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αs=kmax

p þ ffiffiffi
d

p Þ2, respectively. The dotted line shows tipping points predicted in Ref. [10], and the dashed line shows the
prediction from Ref. [11]. (a) The phase diagram of a pollination network of the spring wildflower community in the deciduous forests
of the Piedmont region in North Carolina, which contains 57 species and 143 interactions. (b) The dependence of λ�c on parameter d of
the same network, where λ�c can be calculated from Eq. (6). (c) Results of 50 real pollination networks. Horizontal axis marks the 50
networks, and for each network the prediction of tipping points from Ref. [10] is shown by black dots and 2kmax is shown by triangles
(Ref. [11] predicts λ�c increases from kmax to 2kmax as d increases). The networks are ranked by an increasing order of theoretical upper
bound of tipping points, i.e., the largest eigenvalue of the networks.
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FIG. 2. The phase diagram of a GRN. The red and blue areas
show the collapse region where λ� ≥ ρ and the survival region
where λ� ≤ kmax, respectively. The solid line shows actual tipping
points obtained by numerical simulations on a realE. coli network.
The dotted line shows tipping points predicted from Ref. [10].
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To compare with existing state-of-the-art predictions by
Refs. [10,11] more clearly, we calculate two λ�c ¼
αs=ð ffiffiffiffiffi

γ�
p

−
ffiffiffi
d

p Þ2, predicted by the two methods. Then
we plot λ�c as functions of parameter d from 0 to 2; here γ�
represents the critical value of γ as a function of d when we
fix s ¼ 1 and a ¼ 1. As shown in Fig. 3, λ�c, corresponding
to actual tipping points [solid lines in Figs. 3(a) and 3(b)],
decreases from ρ and stays larger than kmax as d increases,
as we predicted. The results in Ref. [11] [dashed lines in
Figs. 3(a) and 3(b)] indicate that λ�c increases from kmax to
2kmax. This means when d is small, the risk for the network
to collapse will be overestimated; when d is large, the risk
will be underestimated. These systematic biases are also
observed in the original Fig. 2(g) in Ref. [11]. Meanwhile,
it can be seen from Figs. 3(a) and 3(b) that the tipping
points predicted in Ref. [10] fall into the collapse region,
indicating an underestimation of the collapse risk. This is
probably due to the existence of a large hub or unbalanced
sizes of the two parties. An extreme case is the star network,
where Ref. [10] predicts the tipping points λ�c ¼ N=2,
which are much larger than the actual upper bound
ρ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

N − 1
p

. To further validate our analysis, in Fig. 3(c),
we tested 50 real pollination networks from Web of Life,
and the results support the above analysis.
Epidemic process.—The corresponding one-variable

equation of the SIS model is −xþ λβð1 − xÞx ¼ 0, which
leads to λ� ¼ 1=β. The symmetric system undergoes a
continuous transition, thus we predict the original heterog-
enous system has a continuous transition near β × ρ ¼ 1,
which is in agreement with a previous study [18,28].
In conclusion, for general nonlinear cooperative systems,

albeit simple enough, our theorem gives the rigorous
bounds of tipping points [kmaxðAÞ and ρðAÞ, respectively].
These bounds are universal, and results do not depend on
the specific form of the dynamical equations and the
interaction network topology. These bounds provide two
useful criteria to determine the final state of a hetero-
geneous system: the system can always survive when the
difficulty of the environment λ� ≤ kmaxðAÞ; and it will
always collapse when λ� ≥ ρðAÞ. It is important to note that
our approach has made simplifying assumptions, chiefly
the lack of competition within sets. Future work should
explore to what degree our results stand when departing
from those assumptions. Still, our findings open the door to
accurately assessing the likelihood of ecological commun-
ities collapsing in the face of global environmental change,
gene regulation networks malfunctioning in the face of
mutation, or infectious diseases being eradicated through
public health intervention.

Datasets for Figs. 2 and 3 are publicly available at
[29,30], respectively.
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