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a b s t r a c t

k-core decomposition is a widely-used method in ranking nodes or extracting important
information of complex networks. It is a pruning process in which we recursively remove
the vertices with degree less than k to obtain the core of a complex network. The
simplicity and effectiveness of this approach has led to a variety of applications in many
scientific fields, including bioinformatics, neurosciences, computer sciences, economics,
and network sciences. However, the analytical theory of the k-core pruning process is
still lacking. Here we find that in every pruning step of any given network, the Non-
Backtracking Expansion Branch (NBEB) is directly related to the remaining k-core. Using
this NBEB method, we obtain the analytical results of the k-core pruning process and its
detailed critical behaviour.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The k-core of a network is its largest subgraph, where the vertices have at least k edges connected to other vertices in
he subgraph. Such a k-core of a network is often obtained by the k-core pruning process, in which we recursively remove
he vertices of degrees less than k. We repeat the process iteratively until we obtain a finite-sized subgraph, the k-core of
he network, or the network disappears. Fig. 1 shows a simplified illustration of k-core decomposition. Note that a 2-core
ecomposition is performed on the network, and that the final 2-core is obtained after two pruning steps.
The first proposed application of k-core decomposition was to measure the centrality of vertices in social networks

1–8], but recently it has been applied to many disciplines, including biology [9–12], informatics [13–17], economics
18,19], and network science [20–26]. Bader and Hogue [27] developed an algorithm based on k-core decomposition
o identify the densely connected regions in the Protein–Protein Interaction network. Altaf et al. [9] applied the k-core
ecomposition to predict the functions of several function-unknown proteins. Wuchty and Almaas [10] discovered that the
atio of proteins being essential and conserved through stages of evolution increases with the k-coreness of the protein.
ahav et al. [11] used k-core decomposition to describe the hierarchical structure of the cortical organization in the human
rain. Researchers in information science, economics, and complex networks have also use k-core as a filter to obtain
elevant information in a large system [28,29], identify the central countries during economic crises [18], and locate the
ost influential propagators in complex networks [30,31].
The k-core pruning process can also model a simple evolutionary process in which fewer connected participants

radually die out in a mutualistic system. Morone et al. [32] demonstrated that k-core can help predict the tipping points
f dynamic systems, such as gene regulatory networks and mutualistic ecosystems.
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Fig. 1. The illustration of k-core pruning process and k-core. (a–d) the detailed pruning steps of 2-core, the discs represent vertices and the solid
lines indicate the edges. Grey discs and dashed lines represent the vertices and edges that will be removed in this step. Dashed circles stand for the
vertices that have been removed. (e) k-core decomposition result of the network. Here 1-core contains all the vertices, 2-core contains the vertices
arked with red and orange, and 3-core of the network contains the red vertices.

Fig. 2. An illustration of the non-backtracking expansion. (a) gives an example of a simple network. Here v1 ’s neighbouring directed edges set
1 = {e1→2, e1→3, e1→4}, and e2→1 ’s excess neighbouring directed edges set S2→1 = {e1→3, e1→4}. (b) shows the first three generations of the NBEB
2→1 .

In addition to these applications in different scenarios, scientists also studied the theoretical laws of statistical
ehaviour of large uncorrelated random networks under k-core decomposition. The ultimate goal is to analytically find
he size of the remaining k-core (if any). Fernholz and Ramachandran [33] showed that, given a value of k, increasing the
ensity of the network will lead to the emergence of a k-core of the network. This phase transition may be continuous

or discontinuous, depending on the degree distribution of the network. In 2015, Baxter et al. [34] gave a recurrence
expression of the degree distribution of large uncorrelated networks during pruning. Their numerical computations reveals
the critical behaviour in the process, but the analytical result is still hindered by the mathematical difficulty of the four
recurrence equations.

Here we show that the NBEB can be used to analyse the k-core pruning process. We perform the non-backtracking
expansion for each vertex in the network and obtain its corresponding tree structure. The topology of each tree determines
at which step the corresponding vertex will be pruned, or eventually survive. This relationship enables us to directly write
out the size of subgraph at each pruning step, without having to solve the recurrence relation of degree distribution. This
method intuitively explains critical behaviour discovered by previous researches [33–35]. The NBEB method applies to
any network topology, which is unprecedented in our knowledge. Our analytical results show that k-core pruning process
is one of the few examples where we can obtain a detailed, and rigorous picture of critical behaviour.

2. Methods

Before diving into the details, let us first introduce some fundamentals to facilitate the understanding. First, in this
paper, we use e for edges, v for vertices, the Greek letters α and β to denote the index of vertices, and Latin letters j, l,m
to represent the degrees of vertices. e2→1 represents a directed edge from vertex v2 to v1. For a given node v1, we define
the set of directed edges from v1 to each of its neighbours as the set of neighbouring directed edges, denoted by S1.

Another important concept, as illustrated in Fig. 2, is the set of excess neighbouring directed edges S2→1, which contains
all edges in S except e . We can then define an NBEB B , which is a tree-like structure that extends from the root
1 1→2 2→1
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dge e2→1, to its child vertices, which here refer to excess neighbouring directed edges of e2→1, i.e. the elements in S2→1,
and then continues to the ’’children of children’’, etc. Such an expansion is a recursive procedure so that an NBEB is usually
infinite. A concept equivalent to our NBEB has been proposed in Ref. [36]. For convenience we use B(S1) to represent the
et of all NBEBs whose root belongs to S1. Similarly, the set of excess NBEBs, denoted by B(S2→1) represents the set of all
BEBs that start at S2→1.
For a given positive integer k, we define Yn as the set of NBEBs that satisfies the following conditions: there exists a

ubbranch of the NBEB that contains the root, and the amount of child vertices of each vertex in the first n generations
f this subbranch is not less than k − 1. In addition we denote Y0 to be the set of all the NBEBs. Obviously, Y0 ⊃ Y1 ⊃

· · ⊃ Yn ⊃ Yn+1 ⊃ · · · ⊃ Y∞. As an example, the NBEB B2→1 in Fig. 2b belongs to Y1 when k = 3, and it belongs to Y∞

hen k = 2.
After the fundamentals, we introduce the following two important theorems:

heorem 1. An NBEB Bα→β belongs to Yn if and only if B(Sα→β ) contains at least k − 1 NBEBs belonging to Yn−1.

Theorem 2. A vertex vα survives after the nth pruning if and only if B(Sα) contains at least k NBEBs belonging to Yn−1.

Theorem 1 obviously stands according to the definition of Yn, and the proof of Theorem 2 is given in Appendix.
In the following we walk through the details. Assume that the probability yn that a randomly chosen NBEB belongs to

n. Obviously y0 = 1, and from Theorem 1 we can directly write down the recurrence relation of yn. Assume we randomly
hoose a directed edge α → β , and the set B(Sα→β ) has j NBEBs, which means the edge α → β has an excess degree
of j. Under the condition that the network is random, for edge α → β , the probability that B(Sα→β ) has at least k − 1
NBEBs belonging to Yn−1 is a binomial probability

∑j
m=k−1

( j
m

)
ymn−1(1 − yn−1)j−m. Then yn is the sum of all probabilities

with various possible excess degrees:

yn =

∞∑
j=k−1

qj
j∑

m=k−1

(
j
m

)
ymn−1(1 − yn−1)j−m

=

∞∑
m=k−1

ymn−1

m!

∞∑
j=m

j!
(j − m)!

qj(1 − yn−1)j−m

=

∞∑
m=k−1

ymn−1

m!
· G(m)

1 (1 − yn−1)

= 1 −

k−2∑
m=0

ymn−1

m!
· G(m)

1 (1 − yn−1)

≡ f (yn−1), (1)

where qj is the excess degree distribution, G1(z) =
∑

∞

j=0 qjz
j is the probability generating function for the excess degree

distribution [37], and G(j)(z) represents the jth derivative of G(z). Similarly, from Theorem 2, the size of the remaining
subgraph after the nth pruning is

rn =

∞∑
j=k

pj
j∑

m=k

(
j
m

)
ymn−1(1 − yn−1)j−m

=

∞∑
m=k

ymn−1

m!

∞∑
j=m

j!
(j − m)!

pj(1 − yn−1)j−m

= 1 −

k−1∑
m=0

ymn−1

m!
· G(m)

0 (1 − yn−1)

≡ g(yn−1), (2)

here pj is the degree distribution, and G0(z) =
∑

∞

j=0 pjz
j is the probability generating function for the degree

istribution [37]. It is worthwhile to mention that rn follows a power-law decay with respect to time near critical points,
he details are shown in Appendix.
3
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Fig. 3. The critical behaviour of the final size of k-core. (a) The final size of k-core r versus different initial average degrees c. The solid lines
ndicate our theoretical results and the circles represent the simulation results performed on 106 vertices. (b) The critical behaviours of different
-core decompositions near the critical point. The solid lines show the exact power-law relationship of r − r∗

= A(c − c∗)α . Both the exponent α

nd coefficient A are obtained analytically in Appendix. The circles represent the numerical values predicted by our analytical results.

. Results

.1. Asymptotic result

Based on the previous introduction, here {yn} is a descending sequence, and yn ≥ 0 for all n ∈ {0, 1, 2, . . . }. Thus
= limn→∞ yn exists, and it is the largest root less than 1 of the following equation

y = f (y) = 1 −

k−2∑
m=0

ym

m!
G(m)
1 (1 − y). (3)

We then obtain the size of the final k-core,

r = lim
n→∞

rn = 1 −

k−1∑
m=0

ym

m!
G(m)
0 (1 − y). (4)

Fig. 3a shows the size of the final k-core on Erdős-Rényi networks (ER networks), the transition is continuous for k = 2 and
iscontinuous for k ≥ 3. Fig. 3b presents the critical behaviour of different k-core decompositions near the critical point.
he figures show our results are precisely in accordance with simulations. Meanwhile, we have theoretically derived the
xact critical exponents on ER networks. The critical exponent is 2 for k = 2, and 1/2 for k ≥ 3. The detailed derivation

is shown in Appendix.

3.2. The pruning process

The analytical results also precisely describe the transient process of the critical phenomena, i.e. the number of nodes
in the remaining subgraph after each pruning step.

From Eq. (1) and (2), the computation of yn is equivalent to a fixed-point iteration, and rn can then be obtained because
it is a function of yn−1. As an example, we present an analysis of the k-core pruning process on large uncorrelated ER
etworks below. In this case, the generating functions of ER networks G0(z) and G1(z) happen to be the same, ec(z−1), where
is the average degree of the initial network. For 2-core decomposition, we obtain f (y) = 1−e−cy, g(y) = 1−e−cy(1+cy),
o each step of the pruning process can be represented by the corresponding iterative step of y = f (y). Fig. 4 shows the
rocess using a simple visualization method.
In 3-core decomposition, it is easy to acquire f (y) = 1 − e−cy(1 + cy) and g(y) = 1 − e−cy(1 + cy + (cy)2/2). Unlike

he result from 2-core decomposition, there is a discontinuous phase transition at the critical point c∗
= 3.3509 (see

ig. 4d-f). The pruning process exhibits interesting behaviour when c approaches the critical point from the left (see
ig. 4e). In the first few pruning steps, rn rapidly decreases. The pruning then reaches a bottleneck, and becomes a long
ransient process, followed by an avalanche of vertex removal. This phenomenon has been observed in previous numerical
omputations [34]. This discontinuous phase transition is intuitively explained by our analytical results. When c ≪ c∗

he iteration rapidly converges to a stable fixed point at y = 0 (see Fig. 4d), so that no k-core remains. When c > c∗ the
teration stops at the largest root of y∗

= f (y∗). In between the two cases, as c approaches c∗ from the left (see Fig. 4e),
he curve of f (y) and the diagonal line y = f (y) together form a narrow channel through which the iteration process
asses slowly. After passing through the narrow channel, it stops at a stable fixed point at y = 0, which is in accord with
he critical phenomena described above.
4
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Fig. 4. The size of remaining subgraph rn in k-core pruning process performed on ER networks. All panels consist of two parts, left and right. The
left panels show g(y) and the iteration of yn = f (yn−1) during the pruning process and the right panels show rn from both the theoretical result
and numerical simulation result. The green dashed lines in between are indications of the corresponding relationship of rn = g(yn−1) according to
our analytical result. (a–c), the result of 2-core pruning process below, at, and above the critical point c∗

= 1, respectively. (d–f), the result of
3-core pruning process below, near, and above the critical point c∗

= 3.3509, respectively. For a, b, c, d, f, the numerical results are obtained from
simulations on 106 vertices. Since the result is very sensitive to the random perturbation of the original network near the discontinuous phase
transition point, the numerical results in (e) are obtained from 10 simulations on 5 × 108 vertices.

4. Discussion

Overall, we propose that the NBEB can be used as an intuitive way to directly present the results of k-core pruning
process without solving any complex equations. Using the NBEB method, we successfully obtained the size of the
remaining subgraph at any pruning step. Numerical simulations confirm that our analytical results are solid.

Our major contribution is that we have developed a new method that greatly simplifies and reforms the way we
understand k-core decomposition on networks. We can specifically analyse the relationship between the behaviour of
any vertex in the k-core decomposition and the NBEB, which greatly reduces the difficulty of analysis and can help
us understand both this algorithm and the dynamic process. Besides, by using this theoretical solution, we precisely
describe the discrete critical behaviour of the high-dimensional interacting systems, which is rare in the study of
critical phenomena. In addition to the traditional degree distribution approach, this study provides new possibilities for
theoretical problems of network sciences.
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ppendix

.1. Proof of Theorem 2

We use mathematical induction to prove the theorem. It is obvious that the theorem holds for n = 1. Now we prove
hat if the theorem is true for n − 1, the theorem can be established for n.

If Bα→β does not belong to Yn−1,
⇒ B(Sα→β ) contains at most (k − 2) Yn−2 (Theorem 1),
⇒ B(Sβ ) = B(Sα→β ) ∪ Bβ→α contains at most (k − 1) Yn−2,
⇒ vβ cannot survive after the (n − 1)th pruning (induction).
Therefore, by excluding the neighbours that are bound to be removed in the (n−1)th pruning, if one of the remaining

eighbours, vβ∗ , survives after the (n−1)th pruning, Bα→β∗ must belong to Yn−1, that is, B(Sα→β∗ ) contains at least (k−1)
n−2.
Sufficiency. If B(Sα) contains at least k Yn−1,
⇒ B(Sβ∗→α) contains at least (k − 1) Yn−1,
⇒ Bβ∗→α belongs to Yn ⊂ Yn−2 (Theorem 1),
⇒ B(Sβ∗ ) = B(Sα→β∗ ) ∪ Bβ∗→α contains at least k Yn−2,
⇒ after the (n − 1)th pruning, vβ∗ can survive(induction),
⇒ in the nth pruning, vα has degree no less than k, it can survive in this step.
Necessity. If B(Sα) contains at most (k − 1) Yn−1, vα has at most (k − 1) neighbours after the (n − 1)th pruning, and

ill be pruned at the nth pruning. □
As no assumption is adopted to prove Theorem 2, Theorem 2 can establish for any network topology.

.2. Critical exponents on ER networks

While k = 2, we know that the critical point is c∗
= 1. Assume that c = 1 + δ (δ > 0), the equation y = f (y)|c=1 =

− e−y has the only root at y∗
= 0. Since f is the function of both c and y: f (c, y) = 1 − e−cy, assume the root of the

unction y = 1 − ecy is y = y∗
+ ∆y = ∆y, we expand f with Taylor Series at the point (c∗, y∗) = (1, 0):

f (c, y) =f (1 + δ, ∆y)

=f (1, 0) + (δ
∂

∂c
+ ∆y

∂

∂y
)f (c, y)|(1,0)

+
1
2!

(δ
∂

∂c
+ ∆y

∂

∂y
)2f (c, y)|(1,0) + · · ·

=∆y + ∆y ∗ δ −
1
2
∆y2 + o(δ2) + o(∆y2).

y = y − y∗
= y = f (c, y), we obtain ∆y = 2δ + o(δ). r = g(c, y) = 1 − e−cy(1 + cy), then take the Taylor expansion of

r at point (1, 0) we can obtain ∆r = 2δ2 + o(δ2). And finally we obtain the result that critical exponent equals 2, when
k = 2.

Similarly, as k ≥ 3, assume the critical point is (c∗, y∗), then expand f (c, y) at (c∗, y∗), let c = c∗
+ δ (δ > 0), then:

∆y =∆f

=∆y +
c∗(k−2)y∗(k−1)

e−c∗y∗
· δ
(k − 2)!
6
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+
y∗(k−3)

2 · (k − 3)!
c∗(k−1)e−c∗y∗ (1 −

c∗y∗

k − 2
) · ∆y2

+ o(δ) + o(∆y2).

So,

∆y =

√
2y∗

√
c∗ · (c∗y∗ + 2 − k)

· δ
1
2 + o(δ

1
2 ),

then

∆r =
c∗y∗

k − 1
·

√
2y∗

√
c∗ · (c∗y∗ + 2 − k)

· δ
1
2 + o(δ

1
2 ).

We obtain the critical exponent equals 1/2, when k ≥ 3.

A.3. Temporal decay of rn near critical point

Similar to [38], we study the time decay of rn near the critical point. First we study the iteration of yn.

yn − yn−1 = f (yn−1) − yn−1

= f (y∗) + f ′(y∗)(yn−1 − y∗) +
f ′′(y∗)

2
(yn−1 − y∗)2 + o[(yn−1 − y∗)2] − yn−1

=
1
2
f ′′(y∗)(yn−1 − y∗)2 + o[(yn−1 − y∗)2].

Here, because y∗ is the critical point, we use f (y∗) = y∗ and f ′(y∗) = 1. Also, since f is concavity on y∗, we have f ′′(y∗) < 0
except few cases that f ′′(y∗) = 0. Then near y∗, we have

dy
dn

≈
1
2
f ′′(y∗)(y − y∗)2.

We can easily obtain (yn − y∗) ∼ n−1. Then the time decay of rn is:

rn − r∗
= g(yn−1) − g(y∗) =

∞∑
i=1

1
i!
g (i)(y∗)(yn−1 − y∗)i.

Since g ′(y) =
yk−1

(k−1)!G
(k)
0 (1 − y), for discontinuous phase transition: 1 > y∗ > 0, we have g ′(y∗) ̸= 0, so

rn − r∗
= g ′(y∗)(yn−1 − y∗) + o[(yn−1 − y∗)].

That means (rn − r∗) ∼ n−1. All the pruning process for ER network when k ≥ 3 belong to this case.
For continuous phase transition: y∗

= 0 and S∗
= 0, we have g ′(y∗) = 0, let m = min{i|g (i)(0) ̸= 0}, Then

rn =
1
m!

g (m)(0)ymn−1 + o(ymn−1).

That means rn ∼ n−m. In the case of 2-core pruning process of ER networks, we can easily obtain m = 2, so rn ∼ n−2.
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