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Bipartite matching problem is to study two disjoint groups of agents who need to be matched pairwise. It can be applied to many
real-world scenarios and explain many social phenomena. In this article, we study the effect of competition on bipartite matching
problem by introducing conformity into the preference structure. The results show that a certain amount of competition can
improve the overall utility of society and also eliminate the giant shift of social utility when matching unequal numbers of men
and women.

1. Introduction

Bipartite matching problem is to study how the two disjoint
groups of agents can be matched pairwise for their personal
preferences, such as the matching between men and women,
students and colleges, workers and jobs, consumers and prod-
ucts [1–3], and many other scenarios [4–7]. For convenience
we use the paradigm of marriage problem, where N men
and N women need to be matched. In this problem, each
participant is selfish, everyone tries to optimize their own
choices, and the competition is inevitable. A key question is
how to find a stable solution in which there is no such a pair
of man and woman who prefer themselves more than the
assigned partner [8]. The number of stable solutions is very
large [9]; themost famous one among them is obtained by the
Gale-Shapley algorithm, which was awarded the Nobel Prize
in Economics in 2012.

In 1962, Gale and Shapley proved that for the same
number of men and women, a stable solution can always
be obtained through Gale-Shapley algorithm [1]. In this
algorithm, every agent has a preference list, which is a ranking
list of all members from the opposite sex. Men act as suitors
and send proposals to women according to their preference
lists. When a woman has multiple candidate partners, she

always retains her favorite one. The algorithm will continue
until all agents find their spouses. This matching result can
easily prove to be stable, because the only way for men to
improve their current situation is to send proposals towomen
who have already rejected them, but the spouse of these
women must be in front of this man in the women’s lists.
Besides, it also proved to be the men-optimal solution among
all stable solutions.

Statistical physicists also find areas of interest in the
bipartite matching problem because the model is very similar
to a system in which two different particles interact [10, 11].
We assume that the utility of an agent is corresponding to
the ranking of her/his spouse in her/his preference list [12].
It can be generally regarded as a cost function, or ‘energy’ in
physics terminology. In the following text, the term ‘energy’
of an agent is used to express the utility of an agent. If a
person just happens to match the person at the top of her/his
preference list as a spouse, then she/he will be the happiest
and have an ‘energy’ of 1. In the worst case, one had to choose
the person at the bottom of the list and the ‘energy’ would be
𝑁. Inmost of the previous researches [9, 12, 13], for simplicity,
the preference lists are always established randomly and
independently.
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Physicists are constantly interested in finding a solution
with the lowest ‘energy’, which is called the ground state [13–
16]. This is equivalent to the commonly used term ‘minimal
cost solution’. The replica method in spin glass is used to
compute the minimal cost solution in the bipartite matching
problem [14], and the result gives that the average ‘energy’ of
each individual in the minimal cost solution is 0.808√𝑁 [12].
However, 24.2% of men can find one or more women [13], so
that both of them prefer each other to their current spouses.
Therefore, this minimal cost solution is a very unstable
matching. Moreover, the Mean Field Theory is utilized to
calculate the average ‘energy’ of the stable solution obtained
by Gale-Shapley algorithm [12]. In this case, the average
‘energy’ of men is log(𝑁), and the average ‘energy’ of women
is𝑁/ log(𝑁). Further, with the aid of the ‘energy’ distribution
function, it is proved that for all stable solutions, there exists
a relationship 𝜖𝑚 ∗ 𝜖𝑤 = 𝑁. The average ‘energy’ is 𝜖𝑔 = (𝜖𝑚 +
𝜖𝑤)/2 = 0.5(𝜖𝑚+𝑁/𝜖𝑚). It is easy to see that the global optimal
stable solution corresponds to the same ‘energy’√𝑁 for both
men and women, which is a little worse than the global
optimal solution. In addition, it is worthwhile to mention
that the men-optimal solution has the highest total ‘energy’
among all stable solutions. After that, various issues were
investigated, such as the matching problem under partial
choice [17, 18], which means the lists of men only contain a
fraction of all women, or people have a spatial distribution
and tend to match people who are geometrically closer [19],
etc.

One of the interesting questions is, if people’s preference
lists are not strictly random, i.e., if we induce a conformity
term into the preference structure, i.e., the agents have similar
preferences, which makes some of the agents become more
popular than others for all agents, how will the popularity
of agents affect the matching results? Later we will show
that the weight of popularity in the preference structure
is directly related to the competition intensity. In previous
studies [19], numerical simulation showed that the exerting
of competition will lead to higher ‘energy’ and lower util-
ity. Here we thoroughly study the impact of competition
on bipartite matching, and instead of intuitive result that
competition may reduce the utility of the society, our result
shows that a certain amount of competition can increase
the social utility. On the other hand, a recent research [20]
shows that random bipartite matching is very sensitive to the
symmetry of the sizes of the two sides; even reducing the
number of women by only one will lead to a dramatic change
of the ‘energy’ in the matching result. However, this dramatic
change in social utility is rarely observed in real life, even
though the numbers of matching parties in reality are often
different. Our research shows that introducing competition
into the preference list can effectively decrease the symmetry
sensitivity of the matching result and explain the absence of
the dramatic change in daily observation.

2. Method

The Gale-Shapley algorithm [1] is described below: suppose
we have two disjoint sets of N men and N women who

need to be matched pairwise. Each person has her/his
preference list which stores the ranking of all members from
the opposite sex. At the beginning, everyone is unengaged.
In each step, each unengaged man issues a proposal to his
favorite woman among those he has not proposed to. The
courted woman will choose her favorite from all the suitors
and her provisional partner.The process iteratively runs until
everyone is matched and it is easy to realize that a final
matching will be achieved eventually.

3. Results and Discussions

3.1. Matching between 𝑁 Men and 𝑁 Women. Let us firstly
consider the matching problem when the two groups have
equal size. For simplicity, it is usually assumed that everyone’s
preference list is completely random. Considering the process
of Gale-Shapley algorithm, men make proposals to women.
If the courted woman is unengaged, then the total number of
matched pairs will increase by one. If this woman is engaged,
no matter the suitor or her current partner is retained, the
number of partners will not change.

It is proved that on average [12], a total number of
𝑁(log(𝑁)+0.522) proposals need to be sent tomake everyone
engaged. Every proposal leads to a man’s ‘energy’ increasing
by one; the average ‘energy’ of men is the same as the
average number of proposals that he needs to make; i.e.,
the average ‘energy’ of men is log(𝑁) + 0.522. On the other
hand, for women, each of them receives on average log(𝑁) +
0.522 proposals. Each time they receive a proposal, they
can make a choice and decide the man whom they prefer.
Obviously, themore proposals they receive, the lower ‘energy’
women have. Since each suitor is randomly distributed in
the preference list, the optimal one among many choices
is equivalent to the first order statistic of multiple random
sampling from uniform distribution. It is easy to obtain the
woman’s average ‘energy’ as 𝑁/(log(𝑁) + 0.522 + 1). When
𝑁 is large, the average male ‘energy’ is approximately equal
to log(𝑁), and the average female ‘energy’ is approximately
equal to 𝑁/ log(𝑁). This conclusion is consistent with the
results of the ‘energy’ distribution function method used in
previous study [12].

However, in reality the preference lists are seldom purely
random. Some intrinsic properties, such as beauty, intel-
ligence, and wealth, will affect the ranking order of the
preference lists and then a certain level of conformity can be
observed in the structure of their preference lists. People with
those widely accepted attributes are easier to rank in front of
the preference lists of all agents. Let us consider the extreme
case, when the preferences of all agents are strictly based
on popularity term; then everyone should have an identical
preference list. At the first step, all men will make proposals
to the woman they all prefer. The man ranked at the top of
women’s preference list will be accepted and the other men
are refused. After that, the remaining men make proposals
to the woman who is their second favorite, the man ranked
second in the women’s preference lists will be accepted and
the others will be rejected. The process continues, it is easy to
know that the men’s ‘energy’ from low to high are 1, 2, 3 . . . 𝑁
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Figure 1: The number of initial competitors versus the weight of popularity,𝑁 = 1000; the result is averaged over 100 realizations.

and the average ‘energy’ (𝑁 + 1)/2. The average ‘energy’ of
women is the same.

We define the men who have been rejected after the first
round of proposing as the initial competitors. Thus, the total
number of initial competitors can be regarded as ameasure of
the competition intensity of thematching. In the extreme case
above (preference lists are completely the same), following
the Gale-Shapley algorithm, all men will propose to the same
woman so that the number of initial competitors is 𝑁 − 1.
Now consider the other extreme case when the preference
lists are purely random; theoretically the probability that a
woman does not receive any proposal is (1 − 1/𝑁)𝑁; when
𝑁 is large, this probability is close to 1/𝑒. Since the number of
menwho have been rejected is equal to the number of women
who have not received any proposals, the number of initial
competitors is𝑁/𝑒 ≃ 0.368𝑁.

In general, we propose a model to characterize the
realistic situation that some of the agents are ranked high in
the preference lists of all the opposite sex agents. In thismodel
the scores of each agent rating the agents of the opposite
sex consist of two parts: the popularity term that reveals the
conformity of the preference lists and a random term that
brings diversification of the personal preferences.

We assume that woman 𝑖 rates man 𝛼 with a score 𝑆𝛼,𝑖.

𝑆𝛼,𝑖 = 𝜔 × 𝐹𝛼 + (1 − 𝜔) × 𝑁𝛼,𝑖 (1)

Here 𝐹𝛼 is popularity of man 𝛼 and 𝑁𝛼,𝑖 is a random
term. For simplicity, we assume that 𝐹 and 𝑁 are uniformly
distributed on [0,1] and that weight of popularity 𝜔 is
universal for all men and women. One can choose other
distributions for the popularity, but it does not change
the main conclusion. For any intermediate situations the
number of initial competitors lies in [0.368N, N] because
of the monotonous relationship of 𝑆𝛼,𝑖 and the weight 𝜔 by
definition.

Belowwe present a numerical simulation result (Figure 1)
which shows how the number of initial competitors changes
with the weight of popularity in our model. The simulation
is done on a system containing N=1000 agents on each side,

and the result is averaged over 100 realizations. As shown in
Figure 1, the number of initial competitors gets increasingly
higher as the weight of conformity grows.

The preference list of woman 𝑖 is generated according to
the order of her ratings of all men. Similarly, we can obtain
the preference list of everyone. With these preference lists,
implementing Gale-Shapley algorithm, we will obtain the
final stable matching.

Now we start to analyze this matching result. As shown
in Figure 2(a), the average ‘energy’ of men increases mono-
tonically with the weight of popularity, 𝜔. This is because
when the weight of popularity increases, more proposals
are required for everyone to be engaged. However, a slight
competition will significantly reduce the women’s ‘energy’.
This increase of women’s average ‘energy’ grows with 𝑁
(Figure 2(b)), and the competition intensity required for the
women to reach optimal ‘energy’ decreases as the population
grows (Figure 2(c)). As competition further intensifies, the
women’s ‘energy’ will also increase. On the one hand, due
to the increase of the number of proposals, the number
of choices of woman increases. It can be known from the
nature of the order statistics that the minimum number
of multiple random sampling decreases as the number of
sampling increases. The increase in competition between
men is beneficial to the women. On the other hand, the
increase in the weight of popularity also leads women to tend
to favor the men with high popularity and thus increases the
intensity of competition among women. Many women have
to bematched with the men positioned further down on their
preference lists. This will lead to an increase in the average
‘energy’ of women and all people.

Due to the increase of 𝜔 in the beginning, the reduction
of women’s ‘energy’ is more significant than the increase of
men’s ‘energy’. As shown in Figure 3(a), there exists a 𝜔∗𝑔 that
can make average ‘energy’ of all people reaches the optimal
value. In other words, it is a certain degree of social popularity
that increases the total social utility.

In order to study the relationship between a person’s
intrinsic popularity and her/his level of utility, we cluster
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Figure 2: The numerical simulation of average ‘energy’ of men and women, 𝑁 = 1000; the result is averaged over 100 realizations. (a) The
average ‘energy’ of men and women, as a function of 𝜔; (b) for𝑁 = 100, 200, 300, . . . , 1000, the average ‘energy’ of women at𝜔 = 0 is denoted
by 𝜖0𝑤 and at 𝜔 = 𝜔∗𝑤 is denoted by 𝜖

∗
𝑤. Here 𝜔
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𝑤 is the women-optimal value of conformity weight; (c) the optimal weight 𝜔∗𝑤 versus𝑁.

(a)

N

N



∗
Ａ

∗Ａ0Ａ

0

100

200

300

400

500

 Ａ

0.2 0.4 0.6 0.8 10


0

20

40

60

80

0.05

0.06

0.07

0.08

0.09

500 10000
(c)

500 10000

(b)

Figure 3: The numerical simulation of average ‘energy’ of all agents,𝑁 = 1000; the result is averaged over 100 realizations. (a) The average
‘energy’ of all agents, as a function of 𝜔; (b) for𝑁 = 100, 200, 300, . . . , 1000, the average ‘energy’ at 𝜔 = 0 is denoted by 𝜖0𝑔 and at the global
optimal popularity weight 𝜔∗𝑔 is denoted by 𝜖

∗
𝑔 ; (c) the optimal weight 𝜔∗𝑔 versus𝑁.
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Figure 4: The average ‘energy’ of different popularity groups; the horizontal axis shows the different values of popularity. 𝑁 = 1000; the
result is averaged over 100 realizations. (a) The average ‘energy’ of men at 𝜔 = 0 and 𝜔 = 𝜔∗𝑤; (b) the average ‘energy’ of women at 𝜔 = 0 and
𝜔 = 𝜔∗𝑤; (c) the average ‘energy’ of three representative popularity groups of men, bottom(0,0.1), middle(0.45,0.55), and top(0.9,1), versus 𝜔;
(d) the average ‘energy’ of three representative popularity groups of women, bottom(0,0.1), middle(0.45,0.55), and top(0.9,1), versus 𝜔. Note
that when 𝜔 = 0 (triangles) the average ‘energy’ of men or women stays the same as the value shown in Figure 2(a); the small deviations are
the random fluctuations which are irrelevant to the popularity.

the ‘energy’ of men and women to 10 groups according to
the range of popularity [0, 0.1), [0.1, 0.2), . . . , [0.9, 1] (data
binning) and compare their utility in two cases: 𝜔 = 0
and 𝜔 = 𝜔∗𝑤 (women’s optimal). As shown by Figure 4(a),
the competition causes ‘energy’ of men to rise in all pop-
ularity groups. As shown in Figure 4(b), at the women’s
optimal weight of popularity, the ‘energy’ of women in lowest
20% conformity groups increases, and the ‘energy’ of the

remaining 80% women decreases. In general, women will
have lower ‘energy’ with a certain level of competition, as we
have known above.

In addition, we take three representative agent groups
and label them as bottom (popularity ranges [0,0.1]), middle
(conformity ranges [0.45,0.55]), and top (popularity ranges
[0.9,1]), respectively. With the increase of competition, i.e.,
the increase of 𝜔, the ‘energy’ of the three groups of men
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Figure 5: The matching between 1000 men and 999 women, as a function of 𝜔. The result is averaged over 100 realizations. (a) The average
‘energy’ of men and women; (b) Δ𝜖𝑚 versus 𝜔; (c) Δ𝜖𝑤 versus 𝜔.

will increase, while the top women will have lower ‘energy’
and the bottom women will have higher ‘energy’ (as shown
in Figures 4(c) and 4(d)). This change is very sensitive to 𝜔;
even if 𝜔 is very small (0.01), the ‘energy’ difference between
the top group and bottom group has an obvious gap. For
the middle group women, a slight competition improves
their utility, but as the competition intensifies, their ‘energy’
becomes even higher.

3.2. Matching between 𝑁 Men and 𝑁 − 1 Women. For
a long time, the G-S algorithm has been considered to
produce a men-optimal stable matching. In particular, for
a completely random preference list, that is, when 𝜔 =
0, the average ‘energy’ of men is log(𝑁) + 0.522, which
is far less than the average ‘energy’ of women, which is
𝑁/[log(𝑁) + 0.522], so the active side takes a huge advantage
in the matching. However, a recent research [20] shows that
in a random bipartite matching, if one woman is removed
from the matching, the average ‘energy’ of men will become
𝑁/ log(𝑁), and the average ‘energy’ of women will become
log(𝑁). The ’energies’ of the positive and passive sides are
completely reversed.

In our daily life, the sizes of matching parties are rarely
equal. Imagine removing one agent of passive party in the
bipartite matching, for example, reducing a woman in the
marriage problem, downsizing one job position in the labor
market, or cutting one offer in the college admission; under
the assumption of random bipartite matching, the pairing

result will change drastically with the smallest change of the
size of passive side. In particular in the marriage problem,
due to the natural inequality of birth rates of different sex as
well as some other cultural or political impact, the sex ratio
(boys versus girls) is larger than 1. It makes the matching
of unequal numbers of men and women have even more
practical meaning. However, in reality, one of the possible
reasons for the phenomenon that such a large difference in
social utility is rarely seen, is that the low-popularity agents
will be quickly eliminated and other people’s pairing results
are almost unaffected.

We analyze the matching results in the case of 1000 men
and 999 women with different 𝜔. As shown in Figure 5(a),
the curves are extremely similar to that of Figure 2(a), despite
the fact that the gender has reversed.The women become the
dominant side of the matching. We compare this asymmetric
case with the symmetric case above and examine the changes
of the average ‘energy’ ofmen and women,Δ𝜖𝑚 = 𝜖


𝑚−𝜖𝑚 and

Δ𝜖𝑤 = 𝜖

𝑚−𝜖𝑤.The results are shown in Figures 5(b) and 5(c),

respectively. It is found that this difference sharply decreases
with the increase of 𝜔, which explains why the slight change
in the number of people in reality does not obviously affect
overall utility society.

4. Conclusion

In this article we introduce competition in bipartite matching
problem by bringing the conformity in the preference lists
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of agents. While in the traditional Gale-Shapley model, the
preference lists of agents are randomly generated, the active
agents can easily acquire the results they want and stop
sending proposals so that the agents from the passive side are
left with little freedom of choice. We show that if a certain
amount of competition is introduced, the active agents have
to make more efforts and send more proposals, which will
slightly decrease their utility. However, at the same time, the
utility of the passive side will be obviously increased, and
society as a whole will have a higher total utility than the
original matching result. To summarize, a certain amount
of competition increases the total utility of the society. This
not only is true for the bipartite matching problem, but
also enlightens our understanding of many other social
phenomena. Besides, when matching two parties of different
sizes, the utility of the two parties can be dramatically
changed compared to the symmetric case. The introduction
of conformity in the preference lists can also eliminate this
potential significant utility change, which provides a possible
explanation why this significant utility change is rarely seen
in human society.
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