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Learning Cognitive Map Representations for
Navigation by Sensory–Motor Integration

Dongye Zhao , Zheng Zhang, Hong Lu , Member, IEEE, Sen Cheng ,
Bailu Si , Member, IEEE, and Xisheng Feng

Abstract—How to transform a mixed flow of sensory and motor
information into memory state of self-location and to build map
representations of the environment are central questions in the
navigation research. Studies in neuroscience have shown that
place cells in the hippocampus of the rodent brains form dynamic
cognitive representations of locations in the environment. We pro-
pose a neural-network model called sensory–motor integration
network model (SeMINet) to learn cognitive map representations
by integrating sensory and motor information while an agent is
exploring a virtual environment. This biologically inspired model
consists of a deep neural network representing visual features
of the environment, a recurrent network of place units encoding
spatial information by sensorimotor integration, and a secondary
network to decode the locations of the agent from spatial rep-
resentations. The recurrent connections between the place units
sustain an activity bump in the network without the need of sen-
sory inputs, and the asymmetry in the connections propagates the
activity bump in the network, forming a dynamic memory state
which matches the motion of the agent. A competitive learning
process establishes the association between the sensory repre-
sentations and the memory state of the place units, and is able
to correct the cumulative path-integration errors. The simula-
tion results demonstrate that the network forms neural codes
that convey location information of the agent independent of its
head direction. The decoding network reliably predicts the loca-
tion even when the movement is subject to noise. The proposed
SeMINet thus provides a brain-inspired neural-network model
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I. INTRODUCTION

TO NAVIGATE in space, an agent must possess a range of
generic cognitive abilities, such as perception, memory,

and action execution. One specific and essential feature
required for spatial navigation is a cognitive map of the envi-
ronment, which can be used to optimize the actions of the
agent over a long time scale and large spatial range. For
instance, a cognitive map is required for path planning [1],
route following [2], and homing [3]. To build a cognitive
map of an unknown environment without external location
information such as GPS, the agent has to infer its location
and incrementally construct the map from its own sensory and
motor information, a problem called simultaneous localiza-
tion and mapping (SLAM) [4]. When performing SLAM, the
flow of sensorimotor information is transformed into memory
states of self-locations and a cognitive map representation of
the environment is constructed.

Classical engineering solutions to the SLAM problem rely
on filtering methods, such as extended Kalman filter and parti-
cle filter [5], [6]. Filtering-based methods formulate the SLAM
problem in a state-space framework. The motion of the agent
is described by a state transition equation, and the sensory
information, mostly from laser rangefinders, is incorporated to
update the state using the Bayes rule. Filtering-based methods
provide beautiful mathematical frameworks for SLAM, how-
ever, they are challenged in terms of robustness and scalability
when applied to large-scale dynamic environments. In dynamic
environments, it is hard to associate perception with internal
representations. Incorrect data association (i.e., the mismatch
between perception and internal representations) can often lead
the filter algorithm into irreversible divergence. Filtering-based
methods assume static motion dynamics of the agent, and are
not able to adapt to dynamic changes such as varying working
conditions.

As an alternative to filtering-based SLAM methods,
neural-network models have been adopted to tackle the
SLAM problem [7], [8]. Neural networks form distributed
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representations of the environment and learning often take
place locally in the network connections. These mechanisms
prevent neural networks from sudden divergence and allow
networks to adapt to the environment incrementally. Neural-
network models of SLAM are motivated by the behavioral
and neurobiological studies on the spatial memory circuits
of mammalian brains. Animals efficiently acquire cognitive
maps of novel environments and learn to accurately navi-
gate to specific goals. Indeed, neuroscientific studies found
that mammals, such as rats, have an “Inner GPS” in their
brains [9]. Certain neurons within the hippocampus are acti-
vated as the rat visits specific regions of the environment
(so-called place fields) [10]. This kind of spatially selective
neurons, called place cells, is the embodiment of the cogni-
tive map [11], [12]. Place cells in the hippocampus interact
extensively with other cells that represent spatial information,
such as grid cells and head-direction cells in the entorhi-
nal cortex (EC) [13]. Hippocampus, EC, and related cortices
form a spatial navigation network, the “Inner GPS,” which
allows mammals to navigate large and dynamically changing
natural environments. Can robotic navigation systems benefit
from insights into the biological mechanisms of navigation?
Neuroscientists and roboticists have commenced to develop
biologically plausible models for robot navigation [14]–[21].
For example, Müller et al. [14] proposed the “cognitive graph”
model for encoding, in the synaptic weights between place
cells, the spatial distance between certain locations in the envi-
ronment represented by the place cells firing. Samsonovich and
McNaughton [15] proposed a neural network architecture with
a motor system and sensory system, which encodes movement
and spatial location, to explain mechanisms of mammalian
path integration in a continuous attractor network. In [16], a
place cell model for combining perceptual features and path
integration cues by means of a competitive Hebbian learning
rule was proposed, and accounted for the diversity of place cell
responses. Banino et al. [21] proposed a supervised recurrent
network to perform path integration, in which multiscale peri-
odical representations similar to grid cells activity emerged.
These representations were further shown to be critical for
vector-based navigation in the challenging and unfamiliar envi-
ronments. Sitting on the top of the deep hierarchy of the
sensory processing pathways [22], the hippocampus integrates
multiple types of highly processed sensory information to
form a new episodic memories. Memory is not just an iso-
lated module of brain functions, it is tightly coupled with
and plays a critical role in perception, learning, and decision
making. However, most existing models of cognitive maps do
not consider the hierarchical nature of perception, and simply
assume highly idealized features as the inputs to the memory
model [15], [16], [23], [24].

Motivated by the distributed hierarchical processing of the
visual cortex, deep neural networks have been developed
to mimic the hierarchical architecture of visual information
processing in the brain. Deep neural networks transform high-
dimensional complex sensory data into concise representations
of visual features and tremendously boost the performance of
recognition and classification. In this article, we propose a
sensory–motor integration network model (SeMINet) of the

hippocampal cognitive map. The novelty of this article is two-
fold. First, we model the perception and memory in a unified
integrated framework. Second, the network model is biologi-
cally plausible, in that the connectivity of the network model is
based on the findings of the anatomical organization of the spa-
tial memory circuits in mammalian brains. We reproduce some
of the key properties of place cells observed in neurobiological
studies.

The proposed network model is inspired by the brain cogni-
tive architecture and computational mechanisms. Theoretical
studies have shown that neural networks are able to implement
Bayesian information integration [25], [26]. It is, therefore,
possible to constrain the network activity in probability space
and perform the probabilistic computation for navigation
like what filtering-based SLAM methods do. In this article,
however, we do not intend to provide a solution for robot
navigation in real-world environments. Instead, we focus on
the biological plausibility and show that, with simple sensor
data, an integrated perception-memory model is able to learn
stable representations for spatial cognition. To this end, we fol-
low [27] and set a virtual agent (rat or robot) in a simulated
box maze, a common environment setup in neurobiological
experiments.

II. MATERIALS AND METHODS

A. Network Architecture

To develop a biologically plausible model of the hippocam-
pus for navigation, it is essential to lay down the foundation
based on the key properties of the spatial memory circuit.
We list several salient features of the hippocampus in the
following.

1) The hippocampus receives projections from the lateral
EC (LEC) and the medial EC (MEC). LEC cells encode
information about objects and context [28]. MEC con-
tains grid cells that encode the conjunction of space and
movement, and speed cells and head-direction cells that
encode the speed and the head direction of the animal.

2) In the ventral visual system of rats, neurons in the
inferior temporal cortex form invariant representations
of visual objects, which are the main inputs to the
hippocampal system relayed by the LEC [29], [30].
As described by [31], the Hebbian-like learning rule
incorporating the previous activity of cells may be
the biological mechanism for learning invariant visual
representations.

3) Besides visual cues, electrophysiology recordings show
that place cells perform path integration based on self-
motion cues in the absence of visual cues, that is, in the
dark [32]. When available, visual stimuli merely mod-
ulate the firing rates of place cells in rats [33]–[36].
Therefore, it appears that place cells activity is driven
by self-motion cues and visual stimuli serve to correct
the movement errors [37], [38].

4) In the CA3 region of the hippocampus, there are strong
recurrent connections between place cells [15], [24].
These recurrent connections form an attractor network
and encode movement sequences.
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Fig. 1. Framework of the SeMINet model. The architecture has two percep-
tual inputs: visual cues and self-motion cues. The image of the visual scene
is presented to the input layer of the pretrained VGG16 network. The 18th
layer of the pretrained VGG16 network consists of 8192-visual units (green
circles), and are connected to the 1500-spatial units (blue circles) in the hip-
pocampus. The activity of the spatial units is decoded by two read-out units
(red circles) representing the x–y coordinates of the robot in the environment.
Each layer is fully connected to the next layer (black lines). Recurrent con-
nections wika (gray lines with arrows) represent the synaptic strength from
spatial units k to unit i when the robot moves with velocity a. The activity
of spatial units would converge to an activity bump (highlighted yellow disk)
through recurrent connections. The velocity inputs a with a positive scaling
factor S propagate the center of the bump.

Based on these properties, we develop a network model
of the hippocampus with the perception-memory architecture
called SeMINet (Fig. 1). In the model, the hippocampus con-
sists of a layer of interconnected place units. The place units
receive two types of perceptual inputs and form memories
of the positions of the robot in the environment. The visual
inputs are relayed by a deep neural network, namely, a pre-
trained VGG16 network consisting of 18 layers. The deep
neural network extracts visual features from the input images,
mimicking the ventral visual pathway, and its output layer
serves as a model of LEC. Motion information can be decoded
from MEC, but in our model, it is directly fed to the place
units for simplicity. In order to evaluate the quality of the
spatial memory formed in the place units, we use a decoding
network based on predictive learning to read out the spatial
code of place units.

B. Cognitive Map Representations

To encode positions in 2-D environments, we assume that
the spatial units in the hippocampus are arranged regularly on
an abstract 2-D neural space with size �x×�y of arbitrary units.
We use �x = 50 and �y = 30. Spatial units are arranged on a

50 × 30 rectangular grid, with equal distance between neigh-
boring units, resulting in 1500 spatial units in total (Fig. 1). To
avoid boundary effects, the neural space has periodic boundary
conditions [39], that is, units at the edges of the neural space
connect to units on the opposite sides. Periodic boundaries
turn the flat 2-D neural space into a torus.

The spatial units integrate both visual information and
velocity information. The firing rate hi of spatial unit i is
given by

hi(t) = [
Im
i (t)+ ρIv

i (t)+ I
]+ (1)

where [ · ]+ is the threshold-linear transfer function, Im is the
velocity inputs, Iv is the visual inputs, ρ = 0.5 is the strength
of the visual input, and I is the threshold of the spatial unit
activity, set to 10.

The visual input to the spatial unit i is

Iv
i (t) = 1

M

∑

j

vij(t − 1)fj(t) (2)

where fj is the firing rate of visual unit j in the output layer of
the deep neural network, vij is the synaptic strength from visual
unit j to spatial unit i, and M is the number of visual units.

The recurrent input to the spatial unit i is

Im
i (t) = 1

N

∑

k

wika(t)hk(t − 1) (3)

where hk is the firing rate of spatial unit k, wika is the recur-
rent connection strength from spatial unit k to spatial unit i
when the velocity of the robot is a, and N is the number of
spatial units.

The recurrent connection wika is defined as

wika(t) = J1 exp

(

−‖D(�i,�k + Sa(t))‖2

2σ 2
m

)

− J0. (4)

�i = (θ1
i , θ

2
i ) is the coordinate of unit i on the neural

torus. θ1
i ∈ [0, �x) and θ2

i ∈ [0, �y) are regularly distributed
on a rectangular grid with periodic boundary conditions.

‖x‖ =
√∑

k x2
k is the length of a vector x, with xk as the

elements of the vector. D(·, ·) takes the difference between
two points on the torus in each dimension, respectively

D(�i,�k) =
⎛

⎝
mod

(
θ1

i − θ1
k + �x

2 , �x

)
− �x

2 ,

mod
(
θ2

i − θ2
k + �y

2 , �y

)
− �y

2

⎞

⎠

T

. (5)

mod(·, ·) is the modulo operation defined for real numbers.
T is the transpose of a vector. σm is the spread of spatial tun-
ing. J1 = 78 and J0 = 2.3 are the excitatory and inhibitory
strength of the connections, respectively. a(t) is the velocity
input to the network. S > 0 is a positive scaling factor, set to
0.5. The recurrent connections can be formed during the post-
natal development stage by Hebbian type of learning, which
lead the activity of spatial units to converge to a localized
activity packet called “activity bump,” an attractor state of the
network [15], [40]. The velocity inputs modulate the center
of the recurrent connections. For example, if the robot stands
still, that is, the velocity input a(t) = 0, the postsynaptic cell
that is maximally activated by the presynaptic cell �k is itself,
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that is, the recurrent connection profile is centered at �k. The
velocity-dependent recurrent connection profile gives a simple
mechanism of path integration. A more biologically plausible
solution would require conjunctive representations of velocity
and position [15], [17].

C. Learning of Feedforward Connections

The feedforward connections from visual units to spatial
units are adapted according to the following learning rule:

vij(t) = vij(t − 1)+ ηh̄i(t − 1)fj(t) (6)

where hi is the firing rate of the spatial unit i, η = 0.0005 is
a positive learning rate, and h̄i(t) is obtained by averaging the
activity of the spatial unit i

h̄i(t) = (1 − ε)hi(t)+ εh̄i(t − 1). (7)

Here, ε ∈ (0, 1) is a positive averaging factor, and we used ε =
0.6 in the experiments. h̄i represents a trace of the firing rate
of unit i. The weight update in (6) is called the trace rule [41],
it facilitates the association of the postsynaptic activity to the
presynaptic patterns in a long time scale, and therefore helps
extract invariant features from the efferent inputs.

At each time step, weights are further normalized into the
unitary length

∑
j vij

2(t) = 1.

D. Position Prediction

The activity of the spatial units forms neural codes of the
2-D environment. In order to evaluate the coding accuracy of
the neural codes, we construct a simple decoding network to
read out the positional information from the spatial units.

The location of the robot is predicted by

r̂l(t) =
∑

i

uli(t − 1)hi(t) (8)

where uli(t) is the connection from the spatial unit i to the
read-out unit l, and l ∈ {1, 2} represents the two dimensions
of the predicted position r̂.

The prediction error E(t) is given by the L2 norm of the
difference between the actual position r(t) and the predicted
position r̂(t)

E(t) = 1

2

∑

l

(
rl(t)− r̂l(t)

)2
. (9)

The connection u is learned by stochastic gradient descent
(SGD) with the learning rate γ = 0.0001

uli(t) = uli(t)− γ
∂E(t)

∂uli(t)
(10)

where the gradient is

∂E(t)

∂uli(t)
= −(rl(t)− r̂l(t)

)
hi(t). (11)

E. Estimation of the Bump Location

The population activity of the spatial units comprises an
encoding of the location of the robot in the environment. The
spatial codes can be extracted from the population activity of
the spatial units. We define the following transformations of

the activity h to characterize the amplitude A and the positional
phase ψ of the bump in the neural space:

A1 exp(jψ1(t)) := 1

N

∑

k

hk(t) exp

(

j
2πθ1

k

�x

)

(12)

A2 exp(jψ2(t)) := 1

N

∑

k

hk(t) exp

(

j
2πθ2

k

�y

)

. (13)

(θ1
k , θ

2
k ) is the coordinate of unit k on the neural torus. j here

indicates the imaginary unit. According to the definitions in
(12) and (13), the phases ψ1(t) and ψ2(t) are in the range
[0, 2π), and represent the center of the activity profile consid-
ering each side of the torus as circular dimensions. By scaling,
the position of the activity profile on the neural space is then
estimated as

ξ(t) =
(
ψx(t)�x

2π
,
ψy(t)�y

2π

)
. (14)

And the velocity of the bump is

ν(t) = D(ξ(t), ξ(t − 1))

�t
(15)

where D(·, ·) is defined in (5). Here, �t is the time interval
between two time steps.

III. CHARACTERIZATION OF PLACE CODES

To reveal the information conveyed by the activity of the
spatial units in the network, we quantitatively measure the
characteristics, such as the directional selectivity, continuity,
and the information content, of the place codes in the frame-
work of probability. The probability measure allows evaluation
of models without relying on algorithmic details, therefore,
could serve an objective evaluation of models of different
nature. In this article, we construct probability distributions
from network activity, and adopt information-theoretic tools
to measure the place codes learned by the network. Our
characterization method could be used by both robotic and
neuroscience research.

More specifically, the firing activity of each spatial unit is
binned to obtain firing maps m(x), m(α), and m(x;α) as a
function of location bin x, head-direction bin α, and con-
junction of locations and head directions, respectively. For
simplicity, we neglect the indices of the spatial units in this
section.

A. Information of Place Cell Activity

The spatial information conveyed by the place fields of a
unit can be measured by the mutual information between the
firing activity of a unit and the spatial location. The spatial
information rate, that is, the spatial information per unit time,
of a spatial unit is given by

Ip = 1

Np

∑

x

m(x) log2
m(x)

m̄p
(16)

where m̄p = ∑
x m(x)/Np. Np is the number of location

bins. The spatial information rate is derived by assuming uni-
form occupancy of locations in the environment [42]. The
detailed derivation is given in the Appendix for the sake of
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TABLE I
VELOCITY VECTORS OF THE MOVEMENTS OF THE ROBOT

completeness. The uniform occupancy is only a convenient
assumption for the evaluation of the network. During learning,
the uniform occupancy is not required. For the general case of
arbitrary occupancy distribution, the spatial information rate is
computed by including the occupancy explicitly (27).

In a similar way, the directional information rate of the firing
activity of the units is given by

Id = 1

Nd

∑

α

m(α) log2
m(α)

m̄d
(17)

where m̄d = ∑
α m(α)/Nd, with Nd being the number of

direction bins.

B. Selectivity in Head Direction

To determine the degree to which the activity of a spatial
unit changes with respect to the head directions of the robot,
we use the Rayleigh vector length R [43] as an indicator, which
is computed as the modulus of the complex number represent-
ing the average direction weighted by the activities of a spatial
unit

R exp(jφ) :=
∑
α m(α) exp(jα)
∑
α m(α)

(18)

where j is the imaginary unit. m(α) is the mean activity of
a spatial unit in head-direction bin α. The length R ∈ [0, 1]
measures the head-direction selectivity of the spatial unit. The
larger the length R, the more the concentrated of the activity
around the preferred direction φ.

C. Consistency

To quantify the invariance of place fields with respect to
head directions, we calculate the consistency of the place fields
by averaging the distance between place codes expressed in
different directions

C = 1

2Nd(Nd − 1)

∑

1≤i �=k≤Nd[
DKL

(
q(x;αi)

∥
∥∥

q(x;αi)+ q(x;αk)

2

)

+ DKL

(
q(x;αk)

∥∥
∥

q(x;αi)+ q(x;αk)

2

)]
(19)

where q(x;αi) is the firing likelihood of a spatial unit in
location bin x given head-direction bin αi (i.e., q(x;αi) =
m(x;αi)/

∑
x m(x;αi) is the normalized firing activity of

the spatial unit). Nd is the number of head-direction bins.
DKL(q(x;αi)||q(x;αk)) is the Kullback–Leibler divergence

Fig. 2. Simulated virtual environment. (a) Box maze, with the size of 60 m
(Lx) × 40 m (Ly) × 60 m (Lz), has four walls and one floor. (b) Expanded
view from the top of the textures of the walls and the floor. N: North; S:
South; E: East; and W: West.

between the firing likelihood of the spatial unit in two
head-direction bins

DKL(q(x;αi)‖q(x;αk)) =
∑

x

q(x;αi) log2
q(x;αi)

q(x;αk)
. (20)

A large value of C indicates different firing fields when the
robot faces different head directions, that is, low consistency
of place fields in head directions, while zero value of C
means that the spatial unit fires in the same way for all head
directions, that is, maximal consistency of place fields.

IV. EXPERIMENTS

We simulate a robot navigating in a virtual box maze with
the size of 60 m × 40 m × 60 m in length, width, and
height, respectively (Fig. 2). The simulation environment is
from the RatLab described in [44]. The simulation consists of
a learning phase and a testing phase. In the learning phase,
the virtual robot randomly explores the maze with a contin-
uous trajectory while the network learns a representation of
the environment. The speed of the robot is fixed at 1 m/s.
One simulation step corresponds to one second in time. For
simplicity, the movement of the robot is restricted to eight
possible directions, namely, north, south, west, east, north-
east, northwest, southeast, and southwest. At each time, the
robot chooses among its current direction and the two adja-
cent directions with 45◦ separation with equal probabilities.
To avoid collision with the wall, the robot keeps a distance
to the wall ≥ 5 m. This is achieved by choosing a movement
direction parallel to or away from the wall when it is about
to move too close to a wall. Table I summarizes the velocities
of the movement steps. To simulate a natural situation where
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Fig. 3. Response of visual units is weakly selective in space and does not
show coherent selectivity in head directions. The activity of two example
visual units is shown in separate quadrants. Each panel displays the activity
of a unit in space for different head directions, with yellow color for high
activity and blue color for zero activity.

the mammal has only a frontal view, the head direction of
the robot is the same as the movement direction during the
entire simulation. The visual input to the robot is an image of
size 128 pixels × 128 pixels, and is fed to the visual network.
The learning phase lasts for 20-learning epochs, each of which
lasts for 20 000 time steps. After the learning phase, we sim-
ulate a testing phase, in which the network stops adapting its
connections. Note that in the testing phase, the virtual robot
takes the same exploring rule as it does in the learning phase.

A. Visual Features

When the robot faces some particular directions, the activity
of visual units has peaks in certain locations of the environ-
ment, and decays slowly and smoothly in space (ref. panels in
Fig. 3). Thus, the response of visual units is weakly selective
in space. This is because visual units have learned to represent
specific visual features, and visual features in natural scenes
change continuously in the environment. Other than the fact
that the activity of visual units varies slowly in space, the
activity of visual units changes more rapidly as a function of
direction. This is largely due to the fact that the field of view
(FOV) of the robot camera is rather limited.

B. Cognitive Map Representation

The activity of the spatial units is initialized randomly before
the simulation starts. Due to the recurrent connections between
the spatial units, a localized activity pattern emerges in the
neural space [Fig. 4(a)]. The emergence of the activity bump
is determined by the symmetry-breaking process of pattern
formation [45]. The strength of visual inputs fed into the network
is ρ = 0.5. During learning, the network learns the feedforward
connections from visual units to spatial units according to the
trace rule. The learning process establishes the association
between the visual inputs and the network state. After an
initial transient period of about 170 time steps, the activity
pattern is stabilized at a constant activity level [Fig. 4(b)].

With sensorimotor integration, spatial units form firing fields
in the environment [Fig. 5(a)]. The firing fields of each active
unit are localized and cover part of the environment. The fir-
ing fields of different spatial units are scattered across the
environment, tiling the whole environment. The firing fields
expressed in different head directions are independent of the
head directions, and the maximal firing rate of spatial units is

Fig. 4. Population activity of the spatial units. (a) Localized activity bump
emerges in the network. �x = 50 and �y = 30. The activity of the spatial
units is colored by yellow for high activity and blue for zero activity. Only a
fraction of spatial units is activated, forming a Gaussian-shaped bump on the
2-D neural space. The center/peak of the bump encodes the robot position in
the environment. (b) Peak activity of the spatial units converges to a stable
state after about 170 time steps. J1 = 78, J0 = 2.3, σm = 2 [ref. (4)].

similar for all head directions [Fig. 5(b)]. Therefore, the fir-
ing fields of the spatial units are invariant to head directions.
These characteristics of the place codes of the spatial units in
the model are consistent with the characteristics of the place
fields observed in open field experiments, in which rats per-
form random exploration. Collectively, the spatial units in the
model form a cognitive map representation of the environment.

To quantify the characteristics of the place codes of the
network, we measure the information content, selectivity,
and consistency of the firing maps of the spatial units (see
Section III).

A large fraction of the spatial units has high spatial
information rate Ip [Fig. 6(a)]. About half of the spatial units
show a very low spatial information rate due to the fact that
these units are not active in the environment or are activated
only in a very small area near the border of the environment. In
terms of the directional information rate, the spatial units con-
vey almost zero information on the head direction [Fig. 6(b)].
The joint scattering of spatial information and directional
information reveals that the directional information is dis-
tributed in a very narrow range and the positional information
covers a wide range [Fig. 6(c)]. This demonstrates conclu-
sively that the firing rate of spatial units conveys location
information, but not directional information. This is consis-
tent with earlier work that place cells mainly express spatial
information, not other information such as context [46]. More
quantitatively, our result shows that on average CA3 place
cells encode position with about 14 b/s, or 0.0875 b/spike after
normalized by the peak firing rate. This result roughly falls in
the same range of place cell activity observed experimentally
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Fig. 5. Spatial units in the network form localized firing fields in the environ-
ment. (a) Activity of four example spatial units is shown in separate quadrants.
Each panel displays the activity of a unit in space for different head directions.
The activity is coded according to the color bar on the right, with yellow color
for high activity and blue color for zero activity. Spatial units show localized
firing fields in space. The firing fields of the same spatial unit in different
head directions are centered at the same location. (b) Maximal firing rate of
each spatial unit in different head directions is invariant.

by [47]. They showed that the amount of spatial information
conveyed by hippocampal neurons is about 2.02 b/s, or about
0.02 b/spike if normalized by the peak firing rate.

Another method for investigating a directional bias is the
Rayleigh vector length. The activity of spatial units has very
low Rayleigh vector length [Fig. 7(a)], meaning that spatial
units do not fire preferentially when the rat moves in a par-
ticular head direction. This is consistent with the fact that the
spatial units do not convey directional information [Fig. 6(b)].
The joint distribution of the Rayleigh vector length and direc-
tional information is concentrated near the origin [Fig. 7(b)].
The low values of direction selectivity R and directional
information Id prove that these two measures are equally valid
in describing the directional responses of neurons. However,
the shape of the distribution implies that the relationship
between the two measures is nonlinear [Fig. 7(b)].

Fig. 6. Information conveyed by the spatial units is purely positional.
(a) Proportion of the spatial units in terms of spatial information. Half of the
units have a spatial information rate larger than 14 b/s. (b) Histogram of the
information about head directions conveyed by spatial units. The directional
information rate is close to zero. (c) Scatter plot of the spatial information
rate and the direction information rate. Each dot represents one spatial unit.
Spatial units conveyed far more information about location than about head
direction.

Fig. 7. Activity of spatial units is nonselective in head directions. (a) When
assessed with the Rayleigh vector length R [ref. (18)], all spatial units have
very low values, indicating no directional selectivity. (b) Scatter plot of the
Rayleigh vector length and the directional information rate. Each dot repre-
sents one spatial unit. Both the direction selectivity and the head direction
information conveyed by spatial units are low.

Fig. 8. Spatial codes of the spatial units are consistent across head direc-
tions. (a) Histogram of the consistency scores C [ref. (19)]. The consistency
scores are approximately zero for all spatial units. (b) and (c) Scatter plots
of the consistency score and the spatial information (b) and the directional
information (c). Each dot corresponds to one unit. The distributions are widely
scattered without any particular structure.

To measure the consistency of the firing maps in different
head directions, we compute the consistency scores of the spa-
tial units based on the KL divergence. The consistency scores
of the spatial units are near zero [Fig. 8(a)]. In other words, the
activity map of spatial units is consistent across different head-
ing directions. The consistency score is not correlated to either
the spatial information measure or the directional information
measure [Fig. 8(b) and (c)], since their joint distributions are
dispersed.

C. Position Prediction

The activity of spatial units provides a neural code of
the locations in the environment. We construct a perceptron
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Fig. 9. Readout network can faithfully decode the trajectory of the robot,
including the random exploration (a) and zig-zag traverse (c). (a) and (c)
Black line shows an actual trajectory of the robot, while the blue dashed line
indicates the corresponding predicted positions. (b) and (d) Mean position
prediction errors of random exploration trajectories (b) and of zig-zag trajec-
tories (d), averaged across ten different runs, respectively, from the activity
of the SeMINet. Error bars indicate ± standard deviations. Only the first 100
time steps are shown for clarity, which manifest that the position prediction
performance of SeMINet is not trajectory dependent.

network to decode the positional information from the activ-
ity of spatial units. After training in the learning phase, the
readout units faithfully predict the actual position of the robot.
The simulation then proceeds ten independent runs with ran-
dom starting points to test the positional coding performance
of the network. One example trajectory is shown in Fig. 9(a)
and the mean prediction error (mean-squared error) across
all runs stabilizes around 0.191 [Fig. 9(b)]. Moreover, the
position prediction performance of SeMINet is not trajectory-
dependent. The zig-zag moving pattern is also simulated
[Fig. 9(c)], whose averaged prediction error stabilizes around
0.187 [Fig. 9(d)]. Therefore, the SeMINet could work as a
positional encoding network from sensory inputs, and could
support reward learning and other cognitive functions [48],
such as decision making and memory consolidation.

D. Dynamics of the Network

The activity bump is the neural state of the network, and
the center of the bump in the neural space encodes the posi-
tion of the robot in the environment. When the robot moves
in the environment and the velocity information is provided
to the network, the network performs path integration to track
the position of the robot. The activity bump of the network is
shifted by the recurrent connections due to the asymmetry of
the connection profile. We estimated the velocity of the bump
according to the method described in Section II-E. During the
simulation, the velocity components of the bump in the neu-
ral space are proportional to the actual velocity components
of the robot in the environment [Fig. 10(a) and (b)]. This
demonstrates that the network is able to faithfully track the
position of the robot. Due to this linear relationship between

Fig. 10. Dynamics of the bump in the neural space during 20 000 steps
of simulation. The velocities of the robot are shown in Table I. (a) Scatter
plot of the velocity of the bump in the θ1 dimension and the velocity of the
robot in the x dimension of the environment. The relation between the two
velocities can be fitted by a straight line (red dashed line) passing through the
origin. The slope of the linear relation is equal to the parameter S = 0.5 s/m
[ref. (4)]. (b) Velocity of the bump in the θ2 dimension is linearly related
to the velocity of the robot in the y dimension. The red dashed line is the
linear fit.

Fig. 11. Network performs path integration when the velocity stimulus and
the visual stimulus are available. (a) Actual positions of the robot. The red star
represents the starting position at the beginning of the test phase. (b) Estimated
bump locations in the neural space (14). Red star is the initial location of the
bump. (c) and (d) Positional differences between the normalized trajectory of
the robot and the normalized trajectory of the bump are fluctuating around
zero in x dimension (c) and y dimension (d).

the movement velocity in the environment and the bump veloc-
ity in the neural space, the positions of the environment are
linearly mapped to the bump locations in the model. We thus
test the SeMINet further and find that the locations of the robot
in the environment are consistently encoded by the coordinates
in the neural space [Fig. 11(a) and (b)]. After normalized in
each space, respectively, the difference between the normalized
robot locations and the normalized coordinates in the neural
space fluctuates around zero [Fig. 11(c) and (d)].

E. Correction of the Motion Noise by Visual Inputs

The motion of the robot can be subject to errors. In
the testing phase, we perturb the movement of the robot
by adding motion noise from a uniform distribution in the
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Fig. 12. Robustness of the network against motion noise. Mean Euclidean
distances between the normalized robot trajectory and the normalized bump
trajectory for different noise magnitudes.

range [−U,U]. The noise magnitudes are set to U =
0, 0.1, 0.3, 0.5, 0.8, and 1 m/s, respectively. The error, cal-
culated by the Euclidean distance between the normalized
trajectories and the normalized activity bump positions of
the robot, grows slowly with the increase of the motion
noise (Fig. 12). The higher the trajectory error, the lower the
positional decoding accuracy.

Fig. 13(a)–(f) shows the simulation when the noise magni-
tude U = 0.5 m/s, that is, 50% relative to the magnitude of
the intended motion. The actual trajectory of the robot devi-
ates from the planned trajectory [Fig. 13(a)]. The self-motion
cues entering the network are not in accordance with the
actual movements of the robot. Due to the learned connections
between the visual units and the spatial units, the visual units
can change the network states to compensate the mismatch
between the actual motion and the intended motion cues. The
bump trajectory is, therefore, twisted approaching the shape
of the actual trajectory [Fig. 13(b)]. The linear relationship
between the actual movements of the robot and the velocities
of the activity bump is still preserved [Fig. 13(c) and (d)]. As a
result, the errors between the normalized actual trajectory and
the normalized bump trajectory are small [Fig. 13(e) and (f)].
Therefore, with visual inputs correcting path integration, the
network accurately represents the current location of the robot
even when the motion is perturbed by significant amounts
of noise. This demonstrates the robustness of the network in
maintaining spatial representations during movement.

F. Relocalization by Visual Inputs

When the robot enters a familiar environment, or when it
loses the track of its own positions, it needs to recover the
correct internal representations of the locations, that is, relo-
calize [49]. Visual inputs serve an important source of cues for
relocalization. In order to evaluate the relocalization ability of
the SeMINet network, we teleport the robot to some location
in the environment. To create a localization error, we initialize
the bump activity of the spatial units in a location at a certain
distance to the current location of the robot. Then the robot
stays still, and the SeMINet network updates its internal rep-
resentations through visual inputs and zero velocity [a(t) = 0
in (4)]. We use a larger strength for visual inputs (ρ = 50) as
compared to that during the learning phase to facilitate relocal-
ization. Fig. 14(a) shows examples of the final bump locations

Fig. 13. Dynamics of the network against motion noise with magnitude
U = 0.5 m/s. (a) Actual trajectory of the robot (black line) and its intended
trajectory (yellow dashed line) in the environment during the testing phase.
(b) Bump locations during the testing phase. (c) Scatter plot of the velocities of
the bump in the θ1 dimension and the velocities of the robot in the x dimension
during the testing phase. The motion of the robot has random jitters, which
are sampled from a uniform distribution in the range of (−0.5, 0.5) m/s in
both directions. The linear relationship between the actual velocities in the
environment and the velocities of the bump is kept in spite of the motion noise.
(d) Velocity of the bump in the θ2 dimension is linearly related to the velocity
of the robot in the y dimension. The linear relationship is robust against
the perturbation in motion. (e) and (f) Difference between the normalized
positions from the actual trajectory and the normalized bump locations in the
neural space, shown separately for each dimension.

in the neural space after relocalization. When there is no error
introduced, the bump is maintained at the intended location.
When the initial relocation error is introduced, the final bump
locations no longer represent the correct location. On aver-
age, the localization error increases linearly with respect to
the initial localization error [red line in Fig. 14(b)]. The error
corrected by the network is relatively small compared to the
initial relocation error [blue line in Fig. 14(b)]. This demon-
strates that the network has limited ability in relocalization,
but is able to correct small errors during locomotion as shown
in Section IV-E.

Relocalization depends on both visual inputs and feedfor-
ward weights. The correlation between the activity patterns
of the visual units at different locations in the environment
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Fig. 14. Limited relocation performance of the network. The activity bump
is first released in locations at a fixed distance to the correct location in the
neural space, resulting in initial relocalization errors. The initial localization
error is varied from 0 to 6 units (0–3 m) in the neural space. After 100 time
steps, the bump stabilizes due to the attractor dynamics. (a) Locations of the
final stable bumps. Five intended locations are shown by stars distinguished by
colors. The final stable locations are shown by different markers. The magni-
tude of the initial localization error is represented by the shape of the marker.
ρ = 50 [ref. (1)], all other parameters are the same with the standard val-
ues. (b) Errors remained and corrected during relocalization by visual inputs.
Red line represents the average distance across trials between the final bump
location and the intended bump location, that is, the error remained to be
corrected. Blue line represents the distance across trials between the location
of the initially released bump and the location of the final stable bump, that
is, the error already corrected by the visual inputs. (c) Correlation between
the activity of the visual units at the location marked by the white star and
the activities of the visual units at other locations along the trajectory. The
response of visual units is similar at multiple locations, resulting in high cor-
relations. (d) Correlation between the feedforward weights of one example
place units in the lower left region of the neural space with those of all other
place units.

shows multiple peaks [Fig. 14(c)]. The activity of the visual
units alone is, therefore, not sufficient to discriminate between
different locations. The correlation between the feedforward
weights of one place unit and those of all other place
units is high for nearby units but low for units far away
[Fig. 14(d)]. The high correlation in the feedforward weights
between the units within short distance is a result of attrac-
tor states and Hebbian learning. The high correlation in the
feedforward weights is one key factor leading to limited
relocalization performance.

V. DISCUSSION

A. Principle Findings

The primary goal of this article is to learn the cognitive
map representations for a mobile robot. Based on the neurobi-
ological findings in the neural circuits of visual perception and
spatial cognition, we present a brain-inspired neural-network
model to learn cognitive map representations by integrating
sensory and motion information for robot navigation. Principle
findings have confirmed that the activity of the spatial units
in the model expresses positional coding of the robot in the

environment, similar to the place fields of place cells observed
in the hippocampus of rodents. The allocentric representations
of the robot in the network can be decoded by a perceptron
network with high decoding precision. The formation of the
place codes depends critically on the neural dynamics of the
network. The recurrent connections of the network produce
and sustain an activity bump. Triggered by the internal self-
motion cues, the activity bump is translated dynamically in
the neural space in accordance with the motion of the robot,
successfully transforming actual movement information into
positional representations. The asymmetrical recurrent con-
nections provide a neurobiologically plausible mechanism for
path integration. The drift error in the motion is corrected
by the association between the sensory information from the
visual units and the network state of the spatial units. The
integration of sensory and motor information leads to cogni-
tive map representations with robustness against accumulated
motion errors.

B. Related Work and Significance

Places cells in the dentate gyrus or the CA1 area of the
hippocampus have been modeled to integrate the inputs from
the EC [50]–[53]. These models do not consider path integra-
tion, and focus on the transformation from grid cells to place
cells. Neurophysiological studies point to the ability of the
hippocampus in forming the cognitive map by sensory-motor
integration [32]. Some of the existing models are inspired
by the path integrator idea. Müller et al. [14] proposed the
“cognitive graph” model for encoding the transition between
locations in the environment by learning connections between
place cells. This model assumes that place cells have already
formed place fields, and, therefore, does not account for the
dynamic formation of place codes [38]. The idea of “cogni-
tive graph” was elaborated in [15], and a multichart map-based
path integrator (MPI) model was proposed. The MPI model
introduces a motor system into the network and a path-
integration subnetwork integrates the velocity by interacting
with a place cell network. In the MPI model, the sensory
information is simply modeled as ideal Gaussian functions. In
our model, path integration is directly performed by place units
due to the asymmetric recurrent connections, and the sensory
information comes from visual images through the encoding
of a deep neural network. Okeefe and Burgess [54] offered a
model based on the stimulation of place cells only by visual
representations [54]. Their model depends on the geometric
information relative to the walls of the environment, and is not
able to account for the existence of place fields in complete
darkness where sensory cues are not robustly available. The
vector-based navigation method using grid-like representation
in artificial agents called the grid cell agent was developed
in [21]. The grid cell agent uses place cells activity, simplified
as a Gaussian pattern or learned from visual images, as one
kind of supervised learning signals to train a path-integration
model, in which entorhinal grid cells emerge. We, however,
use an unsupervised and more biologically plausible model
to perform the path integration by using the dynamical place
coding of the CA3 subregion, the well-known structure for
mammalian navigation. In addition, visual features, possibly
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coming from LEC, in our model directly project to the path-
integration module. This allows our model to integrate not only
velocity information but also sensory information for robust
spatial representation.

However, visual information extracted in this article is not
discriminative enough to support the relocalization task. On
the one hand, the VGG16 network, pretrained on the generic
dataset for object recognition, is the visual module used to
extract visual features from images in this article. The network
has a fixed connection structure such that the size of input
images has to be limited to 128 pixels × 128 pixels, resulting
in much narrower FOV than that obtained in the previous study
using input images of 320 pixels in width [27]. Small FOV
in this article would lead to ambiguity in place recognition,
especially, in environments without rich textures. The FOV of
a rat can be as wide as 320◦, and would gather enough visual
information to complete one-to-one correspondence between
visual cues and positions. One the other hand, unsupervised
biologically plausible models, like VisNet in [31], could be
used to learn visual features of higher expressive power for
the navigation task.

Moreover, the resolution of place fields may also affect
relocalization. Higher resolution would improve relocalization
performance. Neurobiological findings reveal that hippocam-
pal pyramidal cells of rodents form multiple place popula-
tions, with increasing place field resolution from ventral to
dorsal [55]. Building multiresolutional cognitive map repre-
sentations for natural environments is yet to investigate and
determine the resulting advantage in relocalization.

Our architecture consists of a visual system represent-
ing features of the environment, a spatial memory system
with recurrent connections encoding spatial information by
sensory–motor integration, and a decoding layer to predict
locations of the robot from spatial representations. In sum-
mary, there are three major contributions of this article. First,
the sensory information is extracted by a deep neural network
and this allows applying our model to real-world naviga-
tion tasks. Second, a competitive learning process establishes
the association between the sensory representations and the
memory state of the place units, and is able to correct the accu-
mulated errors in the motion. Third, we develop quantitative
measures of the activity of place units, revealing the coding
properties in locations and head directions. These measures
constitute objective indicators of the activity of both artificial
neural networks and the neural circuits in the brain.

C. Future Work

In the model, the velocity inputs could come from the
intended motion provided by the motor area. The optical
flow from the visual scene is another important source of the
movement information. It would give more robust movement
estimation if a visual network is added to the model to
extract velocities from the optical flow. Our model does not
include head-direction cells, and assumes a limited range of
movements. These aspects will be expanded by including a
separate module of head-direction cells and mechanisms of
short-term synaptic plasticity for movement integration.

We assume that the visual system has already developed,
and adopt a pretrained deep neural network in the model. It
would be interesting to model the development of the visual
perception system together with the spatial memory system.
More important, by training a deep neural network for the
task of navigation, the responses of visual units would become
better indicators of locations, and would support localization
better.

Our model only includes a single population of spatial units.
A more complete model needs to have multiple populations
of place cells with the increasing resolutions of spatial cod-
ing. In addition, our model could be extended to include grid
cells, which function later than place cells in the MEC dur-
ing the postnatal development [56], [57]. Our expectation is
that the grid cell network would increase the performance of
path integration in the large-scale environment due to its mul-
tiresolution coding properties [58] and support vector-based
navigation [21].

This article tries to bridge the gap between neurobiologi-
cal findings and navigation models. The brain-inspired model
presented in this article is a step toward more realistic algo-
rithms for robot navigation in real-world environments. Thus,
further work extending the proposed model to tackle actual
robot navigation tasks should be taken into consideration.
Navigation performance, efficiency, robustness as well as costs
are all important indices to evaluate the proposed architecture
in future research.

VI. CONCLUSION

The SeMINet model proposed in this article provides a uni-
fied model of perception and memory for the navigation task.
The model generates memory states internally by its recur-
rent connections, and updates the memory states by integrating
sensory–motor information. Competitive learning between the
perception system and the memory system establishes the
associations between the sensory cues in the environment and
the memory states of the network, and allows the network to
correct small drift errors caused by imperfect motions cues.
The simulation results demonstrate that the network forms a
cognitive map of the environment that is robust against the
noise in the movement signal. The proposed SeMINet model,
in the future, possibly provides a brain-inspired framework of
cognitive maps for robots’ navigation in realistic environments.

APPENDIX

SPATIAL INFORMATION OF PLACE CELL ACTIVITY

The spatial information of a place cell is measured by
the mutual information between its firing activity and spatial
location [59]

I(S|X) =
∑

x,s

p(s, x) log2
p(s, x)

p(s)p(x)
(21)

where X and S are discrete random variables representing
spatial location and the spiking activity of the place cell,
respectively. X is the binned location of the environment.
S ∈ {0, 1} is the state of the cell, with 0 and 1 corresponding
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to the silence and spiking of the cell. p(x) is the occupancy
probability of the robot in location x.

The mutual information in (21) can be written as [42]

I(S|X) =
∑

x,s

p(s|x)p(x) log2
p(s|x)
p(s)

=
∑

x

p(x)

[
p(S = 1|x) log2

p(S = 1|x)
p(S = 1)

+ (1 − p(S = 1|x)) log2
1 − p(S = 1|x)
1 − p(S = 1)

]

≈
∑

x

p(x)

[
p(S = 1|x) log2

p(S = 1|x)
p(S = 1)

+ 1

ln 2
(1 − p(S = 1|x))

× (−p(S = 1|x)+ p(S = 1))

]
(22)

≈
∑

x

p(x)

[
p(S = 1|x) log2

p(S = 1|x)
p(S = 1)

+ 1

ln 2
(−p(S = 1|x)+ p(S = 1))

]

(23)

=
∑

x

p(x)p(S = 1|x) log2
p(S = 1|x)
p(S = 1)

. (24)

Equation (22) is obtained by the Talyor expansion of the
function log2(1 − p) and neglecting the high-order terms.
Equation (23) also neglects the high-order terms. p(S = 1|x) is
the probability of a spike at location x. Equation (24) is derived
by considering that fact that p(S = 1) = ∑

x p(S = 1|x)p(x).
Assuming the spiking of a cell at location x is a Poisson pro-

cess with mean f (x), in small time interval �t, the probability
of a spike p(S = 1|x) can be written as

p(S = 1|x) = f (x)�t (25)

then, the mutual information in (24) reduces to

I(S|X) =
∑

x

p(x)f (x)�t log2
f (x)

f̄
(26)

where f̄ = ∑
x f (x)p(x) is the mean firing rate of the cell.

The information rate of the cell, that is, the spatial
information per unit time, is

I = I(S|X)
�t

=
∑

x

p(x)f (x) log2
f (x)

f̄
. (27)

Assuming the occupancy probability p(x) to be a uniform
distribution, the information rate is given by

Ip = 1

Np

∑

x

f (x) log2
f (x)

f̄
(28)

where Np is the number of location bins. Following the
convention, 0 log2 0 is defined to be 0.
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