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Recent behavioral studies have given rise to two contrasting models for limited working memory capacity: a “discrete-slot” model in
which memory items are stored in a limited number of slots, and a “shared-resource” model in which the neural representation of items
is distributed across a limited pool of resources. To elucidate the underlying neural processes, we investigated a continuous network
model for working memory of an analog feature. Our model network fundamentally operates with a shared resource mechanism, and
stimuli in cue arrays are encoded by a distributed neural population. On the other hand, the network dynamics and performance are also
consistent with the discrete-slot model, because multiple objects are maintained by distinct localized population persistent activity
patterns (bump attractors). We identified two phenomena of recurrent circuit dynamics that give rise to limited working memory
capacity. As the working memory load increases, a localized persistent activity bump may either fade out (so the memory of the corre-
sponding item is lost) or merge with another nearby bump (hence the resolution of mnemonic representation for the merged items
becomes blurred). We identified specific dependences of these two phenomena on the strength and tuning of recurrent synaptic excita-
tion, as well as network normalization: the overall population activity is invariant to set size and delay duration; therefore, a constant
neural resource is shared by and dynamically allocated to the memorized items. We demonstrate that the model reproduces salient
observations predicted by both discrete-slot and shared-resource models, and propose testable predictions of the merging phenomenon.

Introduction
Working memory (WM), the ability to internally maintain and
manipulate information, is critical for cognition and executive
control of behavior (Baddeley, 1992). A hallmark of WM is its
limited capacity: we can actively hold a few (�4) unrelated items
of information at a time (Miller, 1956; Luck and Vogel, 1997;
Cowan, 2005). For visual WM, studies suggest that the limited
WM capacity can be accounted for by a fixed number of discrete
memory slots (“discrete-slot” model) (Pashler, 1988; Luck and
Vogel, 1997; Zhang and Luck, 2008). For instance, in Zhang and
Luck’s (2008) study, a number of colored squares were flashed on

the screen, followed by a brief delay. Then, one of the items was
cued and the subject had to report the color of cued square by
clicking on a color wheel. The performance data were consistent
with a model in which the report has a fixed precision regardless
of the set size for a small number of items, and is random for the
others, suggesting that the information is stored in discrete slots.
Another recent study offered evidence for an alternative explana-
tion for WM capacity limit in terms of a shared, finite resources
(“shared-resource” model) with a power-law decay of precision
as a function of the set size (Wilken and Ma, 2004; Bays and
Husain, 2008). Although the discrete-slot model is intuitively
appealing, its neural mechanism is poorly understood. A
promising explanation is that each item is actively stored in a
subset of neurons which fire synchronously at gamma band
and different groups of neurons have different phases; the
maximum number of phases limits WM capacity (Lisman and
Idiart, 1995; Raffone and Wolters, 2001). Yet little direct neu-
rophysiological evidence has been shown (Fukuda et al.,
2010), especially when the items are simultaneously displayed.
Moreover, an analog feature such as color is more likely to be
encoded by a distributed neural representation (Conway and
Tsao, 2009), where the similar colors would interfere with
each other (Elmore et al., 2011). For these reasons, it remains
unclear about the temporal dynamics of a WM circuit under-
lying limited capacity.
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In this study, we investigated this issue using a spiking neural
network of Compte et al. (2000) (with parameter variations),
which was designed for WM of an analog quantity like a direction
or a position on a color wheel. We found that, whereas the neural
representation of cues is distributed in a continuous network, the
system behaves in a way consistent with the discrete-slot model,
because each item is stored in a distinct bell-shaped activity bump
and the network is roughly normalized so that the total activity
remains approximately the same for different set sizes, regardless
of whether persistent activity bumps are uniformly or randomly
distributed in space, and across time in the delay, despite fade-out
and merging of bumps. Moreover, we identify two distinct
dynamical effects limiting WM capacity, namely excessive (re-
spectively insufficient) recurrent excitation leads to a merging
(respectively fade-out) of the activity bumps, which have test-
able behavioral implications.

Materials and Methods
Model setup. We adopted a ring architecture, suitable for representation
of an angular feature by a continuous network with spiking neurons
(Compte et al., 2000). The model was originally designed for a spatial
WM task, in which the direction, between 0° and 360°, of a spatial cue
must be remembered across a delay period (Funahashi et al., 1989). This
setting is thus adequate for the Zhang and Luck (2008) experiment,
because the position on a color wheel can be described by a directional
angle. The model consists of 4096 direction-selective pyramidal cells and
1024 interneurons. Both pyramidal cells and interneurons are modeled
as leaky integrate-and-fire neurons (Tuckwell, 1988). The subthreshold
membrane potential, V(t), obeys:

Cm

dV�t�

dt
� � gL�V�t� � VL� � Isyn�t�, (1)

where Isyn(t) is the total synaptic currents to the neuron, Cm is the mem-
brane capacitance, gL is the leak conductance, and VL is the resting po-
tential; other parameters are the firing threshold potential, Vth, the reset
potential, Vres, and the refractory period �. Cm � 0.5 nF, gL � 0.025 �S,
and � � 2 ms for pyramidal cells; Cm � 0.2 nF, gL � 0.020 nS, and � � 1
ms for interneurons; VL � �70 mV, Vth � �50 mV, and Vres � �60 mV
for all neurons (Troyer and Miller, 1997; Wang, 1999).

The recurrent currents are mediated by the receptors of AMPA
(AMPAR), NMDA (NMDAR), and GABA (GABAR). The current from
the spontaneous neural activities outside the local network is modeled as
task-irrelevant background noise, Inoise. The external current, Iext, en-
codes the stimuli in a cue array to pyramidal cells. Each neuron thus
receives a total synaptic current as:

Isyn�t� � �IAMPA � INMDA � IGABA� � Inoise � Iext, (2)

Currents mediated by AMPAR, NMDAR, and GABAR to neuron i are
modeled as:

Ii,AMPA � �Vi � VE��
j

gji,AMPASj,AMPA, (3)

Ii,NMDA � �Vi � VE��
j

gji,NMDASj,NMDA

1 � �Mg2��exp� � 0.062Vi/3.57�
, (4)

Ii,GABA � �Vi � VI��
j

gji,GABASj,GABA, (5)

where [Mg 2�] � 1 mM (Jahr and Stevens, 1990), VE � 0 mV, and VI �
�70 mV. Given a spike train, {tk}, in the presynaptic neuron, a gating

variable, s, for AMPAR or GABAR follows a fast dynamics,
ds�t�

dt
�

�
s�t�

�s
� �

k
��t � tk�; that for NMDAR obeys a slow dynamics (Wang,

1999),
dx�t�

dt
� �

x�t�

�x
� �

k
��t � tk�,

ds�t�

dt
� �

s�t�

�s
� �sx�t�

�1 � s�t��, with �s � 0.5 kHz and �x � 2 ms. �s is 2 ms for AMPAR, 10 ms

for GABAR, and 100 ms for NMDAR. The gating variable for back-
ground noise is independently determined for each neuron by uncorre-
lated Poisson spiking train at a rate of 1 kHz, and exclusively mediated by
AMPAR with the conductances of 2.48 nS for pyramidal cells and 1.9 nS
for interneurons, except in Figure 9C–E (see below), where the conduc-
tance is 2.18 nS for interneurons.

The connectivity between pyramidal cells is structured, consistent
with a columnar organization (Goldman-Rakic, 1995; Rao et al.,
1999; Constantinidis et al., 2001; Conway and Tsao, 2009). Specifi-
cally, the synaptic coupling between neurons i and j, gij, is the synaptic conduc-
tance GEE multiplied by W(�i � �j), where �i is the preferred direction
of neuron i. This connectivity W�� i � � j� � J� � � J� � J��

exp� �
�� i � � j�

2

	2 � (Compte et al., 2000) is normalized as

1

360
�
0

360

W��i � � j�d� j � 1. The parameters J �, J � describe the

strength of the cross- and iso-directional connections, respectively,

and J� �
360 � �2
	J�

360 � �2
	. The connectivity width, 	, reflects the
effective cross-interaction range of pyramidal cells. The connections
onto and from interneurons are uniform: gij,EI � GEI, gij,IE � GIE,
gij,II � GII. We used the neuronal and synaptic parameters from
Compte et al. (2000), except those of the connectivity and back-
ground noise. Specifically, we gradually varied J � from 0.02 to 4.62
and 	 from 0.25° to 15.5° (Fig. 3A). In most of this paper, we showed
the results based on two sets of E-E wiring parameters: J � � 4.02, 	 �
5° (narrow connectivity) and J � � 3.62, 	 � 11.25° (wide
connectivity).

Decoding method. Neurons are divided into subpopulations according
to the stimuli. By calculating the population vector for the subpopulation
of the �th stimulus in a cue array, we decoded its “memory trace” as
�out,��t� � arg � �

j��
rj�t�exp�i�j��, where the summation is over all the

pyramidal cells in this subpopulation; rj�t� �
1

T
�

t�T

t

rj���d� is the average

firing rate of pyramidal cell with label �j, T � 0.1 s. If an activity bump
persists throughout the delay period without merging, the result of such
decoding method is consistent with the decoding method described pre-
viously (Georgopoulos et al., 1989; Zemel et al., 1998; Deneve et al., 1999;
Pouget et al., 2000; Amari and Nakahara, 2005).

Simulation protocol. We simulated two types of tasks to examine the
WM performance: delayed-recall tasks (DRTs) and change-detection
tasks (CDTs). In a DRT (Figs. 1–7, 9 A, B), the network actively maintains
the directions in a cue array as bumps in a delay �9 s (Fig. 1 B). Each cue
array contains one or more different directions, and �in,� denotes the
direction of the �th stimulus. A pyramidal cell, with preferred direction �,
thus receives the external input from all n items in a cue array as

Iext��� � �
��1

n
I0

�2
	s

exp��
�� � �in,��

2

	s
2 �, I0 � 0.4 nA, and 	s � 2 o. In a

uniform cue array, the items are uniformly distributed from 0° to 360°
(Fig. 1C), while in a random cue array, they are randomly distributed
(Fig. 1 D) with a minimum distance �24° (Zhang and Luck, 2009). The
cue array is presented to the network from 0.25 s to 0.5 s and then
withdrawn. We based the recall of cue items on neural activity in the last
0.25 s of the delay using a population decoding algorithm. One hundred
trials were performed for each condition.

In the CDT (Figs. 8, 9C–E), we used the same protocol as that in a DRT
for WM retention process, where the color is encoded as a value of hue
from 0° to 360° (color set green: 90° to 150°; blue: 210° to 270°; red: 0° to
30° and 330° to 360°). We used the wide connectivity network in Figure 8
(see below) and narrow connectivity network in Figure 9 (see below).
In each trial, a cue array (with 2, 3, 4, 6 or 8 colors) and a test array
(with the same set size as the cue), separated by a 1 s delay, are shown,
and a decision must be made on whether they are the same. In half of
the trials, the test arrays, �test, are identical to the cue arrays, �in,
namely “same” trials, where the amplitude of change is 	 � 0°; while
in the other half of the trials, one color in the cue array is changed to
a color with an amplitude, 	, from 10° to 90° away from its value,
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namely “diff” trials. To make such a decision
based on the memory, we used a downstream
“match-nonmatch” neural circuit, which
was previously developed by Engel and Wang
(2011). Furthermore, we simplified this neu-
ral circuit as a sigmoid function (Fig. 8 B),
which decreases with the difference between
the memory read-outs, �out, and test items,
�test:

P�same� � min
� �a

�
b

1 � exp� � ���out,,� � �test,�� � �0�/d��	,

(6)

where a � 0.8214, b � �0.8243, �0 � 23.57°,
and d� � 6.32° for Figure 8 (according to the
human behavioral data of Wilken and Ma,
2004; see below); a � 0.9214, b � �0.9243,
�0 � 28.57°, and d� � 6.32° for Figure 9C,E
(according to the human behavioral data of Lin
and Luck, 2009; see below).

Specifically, in a Lin and Luck CDT (Fig. 9C–
E), we adopted 3 types of cue arrays, namely far
(low similarity), close (high similarity), and
far�close, and performed 3 types of tests,
namely same, diff1 and diff2 (750 trials for each
condition). On far trials, each color in a cue
array is randomly chosen from a different color
set (green, blue or red); on close trials, all colors
are randomly chosen from the same set; on
far�close trials, two colors are chosen from the
same set, while the other one is chosen from a
different set. In same tests, the test array is iden-
tical to the cue array; in diff1 tests, one color in
the cue array is changed to a color 30° away from the original color (for
colors with high similarity, this changed color is on its divergent side); in
diff2 tests (only for colors with high similarity in close and far�close
trials), one color with high similarity is changed to an intermediate level
on its convergent side. A mixture of the same trials (50%) and diff1 trials
(50%) is equivalent to the behavioral experiments of Lin and Luck
(2009). In both close and far�close trials, the minimum distance between
sampled colors are �20°.

Quantification of WM performance and capacity. In DRTs, the WM
performance can be measured using parameters Pm and s.d. from

the discrete-slot model by a von Mises fit f�x�Pm,� �
Pmecosx

360I0��

�
1 � Pm

360
, where the response offset x is the difference between the

reported and cued directions,  is a concentration parameter (Fisher,
1993). Pm quantifies the proportion of memorized items and

s.d. � �� 2log
I1��

I0��� describes the memory resolution, where I1()

and I0() are the modified Bessel functions with order 1 and 0, respec-
tively. The WM performance can also be measured using parameter

Ps �
1

s.d.
from the shared-resource model, where s.d. is the circular

standard deviation (Fisher’s fit) s.d.2 � �2log
1

N��n�1

N

exp�ixn��� (Bays

et al., 2009). When the distribution of the response
offset x is nearly uniform, e.g., the set size is large, Fisher’s fit would
overestimate Ps (or underestimate s.d.). The improved estimation

of Ps should be Ps �
1

s.d.
� P0, where

P0 � � N

�x exp�x � N exp� � x��
dx is the expected precision under

uniform distribution of the data (Bays et al., 2009). In Figure 3D (see
below), we normalized Ps by the maximum value across different set
sizes. To generate the response offset distribution, we randomly chose a
value from (0°, 360°) as the report of any fade-out bump, and assessed Ps,
Pm, and s.d. using the unbinned data and the Matlab code from Bays et al.
(2009). In both models, we checked and confirmed that the circular
means of the simulated data are around zeros (data not shown).

In this study, we also developed two parameters for WM performance:

correct rate of the reports, Pc �
No. of 
��out,� � �in,�� � �th�

No. of items in cue array
, describes

the fraction of report which is close to the cue, and standard deviation of
the reports, S.D. � ��

�
��out,� � �in,��2, describes the memory precision

of the reports from merging and persistent bumps. We used correct
threshold �th � 5° (low threshold) for most of the performance curve,
and showed those at �th � 8° for comparison (Fig. 5 B, D) as comparison.
Notably, the performance curves are comparatively robust for different
correct thresholds for uniform cue arrays, therefore we defined WM
capacity as the set size maximizing the product of set size and its Pc, using
uniform cue arrays. Moreover, we compared the fitting curves

using SD 
 f�x�S.D.� � �erf
 180

�2S.D.2���1

exp
 �
x2

2S.D.2� (namely

“our model”) and using 2-parameter von Mises fit, Pm and s.d.


 f�x�Pm,� �
Pmecosx

360I0��
�

1 � Pm

360
(namely discrete-slot model) in Fig-

ure 5A (see below).
For the CDT in Figure 8 A (see below), we measured the WM perfor-

mance using parameters hit rate, false alarm rate, and correct rate of the
reports, Pc. We defined the hit rate as the probability to respond to
“different” in the diff trials, 1 � P {same, 	 � 0°}, and the false-alarm rate

Figure 1. Network model structure and simulation protocol. A, Model scheme. The network is composed of spiking excitatory
pyramidal cells (Exc) and inhibitory interneurons (Inh). Pyramidal cells are uniformly placed on a ring, labeled by their preferred
directions (shown by arrows). The connections between pyramidal cells are structured as a Gaussian function of the difference in
the preferred directions (top), and the connections onto and from the interneurons are uniform. B, Simulation protocol. A cue array
is presented to the network from 0.25 s to 0.5 s, followed by a delay period up to 9 s. C, D, Sample cue arrays of 6 uniformly and
randomly distributed directions, respectively.
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as the probability to respond to different in the same trials, 1 � P {same,

	 � 0°}. The correct rate across the diff and same trials is:
1

2

�1 � P
same,	 � 50�� �
1

2
P
same,	 � 0�, where half of the trials

are the same trials (	 � 0°); the other half of them are the diff ones (	 �
50°) (Luck and Vogel, 1997; Vogel et al., 2001). In the diff trials, the
amplitude of 	 varies from 60° to 90° (step is 10°) with the same proba-
bility. Particularly, probabilities to choose diff at these amplitudes are
almost saturated (Fig. 8 D).

Measures of population activity. The average firing rate of pyramidal

cells is r��t0 � T� �
1

NT
�

t0

t0�T

�
i�1

N
ri�t�dt, where T � 0.25 s, t0 is the time

0.25 s before the end of the delay, and ri(t) is the firing rate of the ith
pyramidal cell at time t. The total width of activity bumps is Wtot � ��

W�, where W� is the width of �th activity bump assessed according to the
spatial profile of firing rates (twice the standard deviation of the Gaussian
fit) within 0.25 s preceding the end of the delay.

The instantaneous average recurrent excitatory synaptic conductance,
G�(t), and the instantaneous average firing rate of pyramidal cells, R�(t)
(Fig. 7 D, E) of the �th bump are calculated as follows:

G��t� �
1

N�
�
i��

�
j�all

gji,NMDASj,NMDA�t�

1 � �Mg2��exp� � 0.0062Vi/3.57�
, (7)

R��t� �
1

N�
�
i��

ri�t�. (8)

We calculated the average firing rates R� �
1

T
� R�t�dt and the average

excitatory synaptic conductance of each activity bump G� �
1

T
� G�t�dt

(Fig. 7F ) using the period, T � 1 s, preceding the end of the delay period.

Results
Population coding gives rise to the discrete-slot model in a
continuous attractor network with normalization
Using a continuous network model of spiking neurons selective
for an angle � representing an analog feature such as the position
on a color wheel (Fig. 1A), we investigated WM capacity by ex-
amining how the system responded to the presentation of an
array of directions (Fig. 1B–D). Figure 2A shows the spatiotem-
poral spiking neural activity pattern of a network with wide con-
nectivity (J� � 3.62, 	 � 11.25°), with firing rates plotted as a
color-coded map, for a uniform array of 2, 3, 4 or 6 directions.
Several characteristics are worth noting. First, pyramidal cells
spontaneously discharge at a low rate (�3 Hz) without tuning to
any specific directions before the onset of the cue array. Second,
when the cue array is presented, the pyramidal cells, whose pre-
ferred directions are close to the stimuli in the cue array, increase
their firing rates and form distinct bell-shaped activity profiles
(bumps) that encode the directions of the corresponding stimuli.
Third, these activity bumps continuously develop after the cue
array withdrawn. When the set size is small (Fig. 2A, top), the
WM load is low, and all the activity bumps can persist throughout
the WM delay with slight drifts. For instance, Figure 2A (upper
left) shows that two activity bumps are elicited in the cueing stage
and persist during a 1 s delay with almost the identical bump
width. Therefore, the representations of directions are actively
maintained in WM and can be read out accurately after the delay.
On the other hand, when the set size is large, the WM load is high;
some activity bumps may fade out or merge in the WM delay. For
instance, in a sample trial with 6 directions (Fig. 2A, lower right),
one activity bump persists throughout the delay, three bumps

fade out and two bumps merge in the early phase of the delay.
Hence, after a short delay, i.e., 1 s, the information of three fade-
out cues is lost; that of the original directions of two merging cues
is blurred.

We assessed the network performance based on the readout
from neural population activity in the last 0.25 s of the delay
using a population decoding algorithm (Materials and Meth-
ods). Consistent with the observations from human visual
experiments (Luck and Vogel, 1997; Zhang and Luck, 2008),
the network model shows high (poor) performance at small
(large, respectively) set sizes. With a 1 s delay (black, Fig.
2 B–D), both the correct rate of reports (Pc � 100%) and mem-
ory resolution (SD � 2°) are high when the set size is smaller
than a critical number (�4), while Pc sharply decreases to a
low level (�20%) and SD drastically increases to a plateau
(�18°), once the set size exceeds this critical number (Fig.
2C,D). We found that this critical set size not only defines the
WM capacity, which maximizes the product of the correct rate
of reports and the set size (Fig. 2 B), but also sets an upper
bound of the number of the distinct activity bumps. In our
model, since recurrent network dynamics continue to unfold
over time, merging or fade-out could occur later in the delay
period, therefore WM capacity depends on the delay duration,
as it is shown by comparison of performance with 1 s versus 9 s
delay (black vs gray, Fig. 2 B–D). We will return to this model
prediction later. The plateau of response precision implies
that the network represents the memorized directions with an
almost constant accuracy, and the low correct response rate
indicates that the network forgets some of them if the set size
outnumbers WM capacity. Therefore, even though our model
is a continuous network and cue directions are encoded by a
distributed neural population, it reproduces the defining be-
havior of a discrete-slot model.

Interestingly, in our model, the neural population activity is
normalized, in the sense that the total width of activity bumps
and the average firing rate of pyramidal cells are almost indepen-
dent of the set size. Although the width of a single activity bump
in the upper left panel of Figure 2A is obviously wider than that in
the upper right panel, the total width of activity bumps are the
same. Even the activity bump fades out in Figure 2A lower right,
the total width of activity bumps remains essentially constant, as
the merging bumps expand while the fade-out bumps shrink. To
quantify this intuitive observation, we calculated the total width
of activity bumps and the average firing rate of all pyramidal cells
in 0.25 s preceding the end of the delay period, and found that
both are almost constant despite the set size and the delay dura-
tions with or without fade-out and merging (Fig. 2E,F). If we
define the WM resources as the activity of pyramidal cells, net-
work normalization indicates that the system recruits a roughly
constant amount of memory resource (Bays and Husain, 2008;
Buschman et al., 2011), which is dynamically shared by the mem-
orized items (Fig. 2A). With a set size smaller than WM capacity,
each activity bump has the same width; the neural representa-
tions of items in WM thus equally share the resources. With a set
size above WM capacity, an activity bump may merge with an-
other activity bump or fade out, and the WM resources are dy-
namically shifted from a fade-out activity bump to another
activity bump or absorbed by merging activity bumps, which
agrees with the defining behavior of shared-resource model (Bays
and Husain, 2008). Moreover, to maintain the persistent activity,
a distinct activity bump must recruit a minimum number of
pyramidal cells to make the local excitation strong enough.
Therefore, the normalization, which implies a fixed total bump
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width, gives rise to a maximum number of
distinct activity bumps.

Working memory capacity depends on
the strength and width of recurrent
excitatory connections
The model has structured excitatory re-
current connections and unstructured in-
hibitory connections, allowing us to focus
on the effects of excitatory-to-excitatory
(E-E) connections on WM capacity. Spe-
cifically, we gradually varied the E-E con-
nection strength J� and spatial footprint
	 to examine how WM capacity depends
on the local recurrent excitation (Fig. 3A).
With weak or narrow connections (navy
blue), recurrent excitation is insufficient
to support any persistent activity bump.
Otherwise, WM capacity varies from 2 to
7, which is consistent with the human re-
ports of the single-feature WM capacity
(Xu and Chun, 2006). The E-E connectiv-
ity thus plays an important role in modu-
lating WM capacity. We found that WM
capacity monotonically increases with J�

given a fixed 	 (horizontal white line, Fig.
3A). The increase of J� enhances iso-
directional and weakens cross-directional
E-E connections. Consequently, neurons
within an activity bump receive stronger
mutual excitation among themselves,
but neurons in different bumps excite
each other less effectively, hence self-
maintenance of distinct activity bumps is
favored and WM capacity is larger. In
contrast, with increasing 	 given a fixed
J�, WM capacity increases at first, then
decreases (vertical white line, Fig. 3A). A
narrower connectivity (smaller 	) results
in less pyramidal cells recruited to repre-
sent each item, as well as decreased mu-
tual excitation; it thus is detrimental to the
maintenance of an activity bump and
leads to a smaller WM capacity. On the
contrary, if 	 is large, there would be an
excessive number of pyramidal cells for
the representation of each item (bumps
are wide). These wide bumps merge with a high probability, and
WM capacity is thus small. Therefore, a large WM capacity re-
quires strong recurrent excitation with an optimal spatial
footprint.

Although WM capacity depends on E-E connections, the typ-
ical characteristics of the networks with different E-E connections
are similar. Given the uniform cue arrays, the performance curves
of the network with narrow connectivity (�a, Fig. 3A) are similar
to those of the network with wide connectivity (�b, Fig. 3A).
Given uniform cue arrays, Pc drastically decreases to a low level
and SD sharply increases to a plateau when the set size exceeds
WM capacity (�3 in Fig. 2 and �6 in Fig. 3B,C for a 9 s delay),
which have a step-like shape. However, given the random cue
arrays in which the minimum distance between items is �24°
(Zhang and Luck, 2009), Pc continuously decreases and SD con-
tinuously increases with the set size until reaching the same pla-

teaus for the uniform cue arrays (Fig. 3B,C). Of note, due to the
attractor dynamics in our model, the memorized items are stored
separately in different discrete slots during retention process
(discrete-slot feature), wherefore SD (Fig. 3C) for random cue
arrays resembles the human experimental data from the discrete-
slot model. Using the global inhibition, the roughly constant
memory resource is dynamically allocated to the memorized
items (shared-resource feature), wherefore the relative precision,
which is normalized by the maximum Ps over all trials (Materials
and Methods), follows a power-law decay function of set size,
which resembles that observed in the shared-resource model
(compare Bays and Husain, 2008, their Fig. 3B, with our Fig. 3D).

Surprisingly, although the persistent activity pattern and per-
formance are considerably different with random versus uniform
array of cues, network’s normalization is remarkably similar for
the two types of cue arrays (Fig. 3E,F). Therefore, the total WM

Figure 2. Neural spiking activity, WM performance and normalization. The network has a wide E-E connectivity. A, Spatiotem-
poral neural activity pattern of pyramidal cells in response to an array of 2, 3, 4, or 6 directions. Pyramidal cells are labeled along the
y-axis according to the preferred directions. The x-axis represents time. Firing rate is color coded. After being briefly presented
during the cue period (marked as C on x-axis), each stimulus evokes a bell-shaped activity pattern of localized pyramidal cells
(bump). In the lower right panel, some activity bumps fade out, some merge with each other, while all the elicited activity bumps
in the other three panels persist in a 1 s delay period. Notably, the width of persistent activity bumps decreases with the set size.
B–D, The performance of the network. B, The product of the set size and its correct rate of the reports exhibits a maximum. The
corresponding set size defines WM capacity. WM capacity is smaller with longer delay duration. C, The correct rate is �100% for a
set size below WM capacity, but declines sharply to �20% for a set size above it. D, SD is �2° for a set size below WM capacity, and
sharply increases to �18° for a set size above it. E, F, A constant memory resource by network normalization. The total width of
mnemonic activity bumps (E) and average firing rate of pyramidal cells (F ) are almost invariant to set sizes, and roughly the same
for 1 s and 9 s delays.
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resources are independent of the details of external inputs, but
are determined by the E-E connectivity profile (comparing Fig.
2E,F with 3E,F).

Working memory capacity depends on delay duration
Figure 4A shows the same sample spatiotemporal patterns as
those in Figure 2A, except for a longer delay of 9 s. Notably,
activity bumps may fade out or merge at different times in the
delay. This explains why the performance is different for a delay
of 1 s versus 9 s (Fig. 2B), when the set size is in an intermediate
range. For a small set size, none of the activity bumps will fade out
or merge in a prolonged delay, whereas for a large set size, bump
fade-out or merging takes place early. In both cases, WM perfor-
mance is insensitive to the delay duration. On the other hand, for
intermediate “critical” set sizes, bump merging and fade-out ex-
hibit slow stochastic dynamics during the delay. Consequently, WM
capacity exhibits a dependence on delay duration (Fig. 4B, top). SD

also depends on delay duration in a trend mirroring that of correct
rate (Fig. 4B, bottom), and the set size at which SD starts to saturate
is roughly a linear function of WM capacity (Fig. 4C).

Comparing capacity estimation using
different measurements
The behavior of WM performance “near a critical set size” has
been examined in a human study as a probe to the forgetting
mechanism of WM (Zhang and Luck, 2009). It was assumed that
a subject would report a random value in the case he or she forgets
the memorized item, or report a value around the original cue
when he or she remembers it (Zhang and Luck, 2008). This
discrete-slot model was formulated using a 2-parameter von
Mises fit. To compare with the psychophysical data from the
discrete-slot model, we performed this fit to the distribution of
the response offset, �out � �in (unbinned data), for random cue
arrays. With a 1 s delay, we found that the discrete-slot fit of
simulated data (Fig. 5A) is comparable with that of Zhang and
Luck (2008), their Figure 1c. We compared quantities, Pm and s.d.
of discrete-slot model with Pc and SD of our model using the
same data and plotted as functions of set size (Fig. 5B,C) and
delay duration (Fig. 5D,E). These two quantification methods
display the same trend of performance: Pm and Pc decreases (s.d.
and SD increases) as a function of set size and delay duration. Of
note, (1) Pc with high threshold displays a smooth decrease,
which resembles Pm (Fig. 5B,D); (2) although SD from our
model exhibits a continuous and smooth increasing against set
size (Bays and Husain, 2008; Bays et al., 2009) and delay duration,
its alternative fit, s.d., reaches a plateau when set size is �4 (ca-
pacity), which is consistent with the behavioral data in recent
studies using brief delays (Zhang and Luck, 2008; Anderson et al.,
2011), and the prediction by Fukuda et al. (2010). Notably, s.d. is
nearly constant against the delay duration (Fig. 5E), indicating
that a declined performance with longer delays mostly results
from the sudden death of the mnemonic items (fade-out; Zhang
and Luck, 2009).

Network mechanism underlying fade-out and merging of
activity bumps
We have identified the fade-out and merging as the main dy-
namic effects limiting WM capacity. Indeed, the probability of a
fade-out or a merging bump sharply increases from a low level to
a high plateau when the set size increases above the WM capacity,
as shown for both wide (Fig. 6A) and narrow (Fig. 6B) network
connectivities. The sum of the fade-out and merging probabilities
approaches 100% when set size is much larger than WM capacity.

With the same parameters as in Figure 6B, and a set size of 6
(capacity), all the activity bumps persists throughout a delay of 9 s
(Fig. 7A). However, with a set size of 8 (above capacity), only four
activity bumps persist until the end of the delay, whereas two
activity bumps fade out (at 67.5° and 337.5°) and two others
merge (at 247.5° and 292.5°) into one (Fig. 7B). A persistent
activity bump has a bell-shaped spatial distribution of neural
activity, while the merging activity bump displays a wide plateau
in the spatial profile of neural activity, as shown by the population
activity for the last 1 s of the delay (Fig. 7A,B, right).

The single neurons inside these three types of bumps display
the distinct firing activities during the delay (Fig. 7C). First, neu-
rons around the peak of the persistent bump at 22.5° (a in Fig.
7B,C), spike at a high frequency in the cueing stage and at a
moderate frequency �50 Hz with small fluctuations during the
delay, which maintain the memory trace of the cue direction.
Second, neurons in the bump at 67.5° (b in Fig. 7B,C) that even-

Figure 3. WM capacity depends on E-E connections. A, Dependence of WM capacity on E-E
connectivity. The WM capacity is color coded and shown on the plane of two parameters char-
acterizing E-E connections: the strength J � and spatial width 	. When J � is too weak or 	 is
too small (navy), the persistent activity is absent. Outside of that region, WM capacity ranges
from 2 to 7; it is larger with more narrowly structured local synaptic excitation (smaller 	),
which needs to be compensated by larger connection strength J � to ensure sufficient recurrent
excitation for WM maintenance. For a fixed J � � 4.02, WM capacity increases at first and then
decreases with the increasing connection width, peaking at 7 (vertical white line). For a fixed
	� 5°, WM capacity increases with the increasing connection strength (horizontal white line).
B, C, Performance of a narrow connectivity network (�a in A) with uniform and random cue
arrays. Correct rate and SD show a step-like transition as set size increases for uniform cue arrays
(black), while there is a smooth function for random cue arrays (red). All the fitting curves are
sigmoid functions. D, The relative precision for random cue arrays exhibits power-law depen-
dence on set size. The total width of activity bumps (E) and average firing rate of pyramidal cells
(F ) are normalized for both uniformly and randomly distributed arrays of directional cues.
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tually fades out, increase their firing rates
upon cue presentation, exhibit persistent
activity (�50 Hz) in the early phase of the
delay, but abruptly cease firing at �3 s in
the delay. This sudden disappearance of
mnemonic activity reveals an “all-or-
none” mechanism for losing the memo-
rized information. Third, for neurons
within and between two bumps at 247.5°
and 292.5° (c in Fig. 7B,C), the firing rates
are initially quite different. Over time,
however, they all converge to a similar ac-
tivity level of �50 Hz late in the delay,
when the two bumps eventually merge
with each other. Neurons near the centers
of the two activity bumps behave similarly
as those in a persistent bump, whereas fir-
ing rates of neurons located at the edges of
the original two distinct bumps slowly
ramp up; neurons in the midpoint be-
tween the two distinct bumps are essen-
tially silent in the early phase of the delay
period, but display a sharp jump of activ-
ity to �50 Hz in the late phase of delay.
Therefore a gradual ramping and a sud-
den transition from spontaneous activity
to persistent state in the delay may be
manifestations of a merging phenomenon
that is observable at the single cell level.

E-E interactions support the persistent
activity (Fig. 3A), which might be also a
key factor determining whether a bump
fades out or merges with another. To test
this, we calculated two quantities for each
activity bump in Figure 7B: the instanta-
neous average recurrent excitatory synaptic
conductance, G(t), and the instantaneous
average firing rate of pyramidal cells R(t)
throughout the delay, and classified them
into three groups: persistent bumps (P),
fade-out bumps (F), and merging bumps
(M) (Fig. 7D,E). In a fade-out bump, G(t) exhibits a sharp de-
crease at an unpredictable time in the delay, to a small but non-
zero level. R(t) decreases to zero Hz, implying that the excitatory
drive they receive is below firing threshold. Note that the sudden
drop of G(t) precedes that of R(t), as expected for a fade-out
process: the decrease of excitatory currents leads to less spikes in
a localized activity bump, which in turn results in further weaker
recurrent excitation; the cycle continues until the overall excit-
atory drive becomes too small and the bump fades out. For the
bumps that eventually merge, G(t) and R(t) increase during the
merging process and reach a high level afterward. The increase of
G(t) preceding that of R(t) displays the process opposite to the
observation of fade-out: stronger excitatory currents lead to
more spikes in the localized activity bump, which results in even
more recurrent excitation; when this positive feedback exceeds a
certain level, neurons between the two activity bumps receive
enough excitation to switch to a high activity state (Fig. 7C, right),
and the two activity bumps merge with each other. For persistent
bumps, G(t) and R(t) fluctuate but remain roughly constant over
time. Their values are smaller than those of merging bumps and
larger than those of fade-out bumps. Therefore, insufficient ex-

citation leads to fade-out, while excessive excitation results in
merging.

To better examine the correlation between recurrent excitation
and neural activity, we calculated the average firing rates R� and the
average excitatory synaptic conductance of each activity bump G� .
Figure 7F shows R� plotted against G� for different activity bumps
using a uniform cue array of set size 8. Three groups can be clearly
discerned: the values of R� and G� for merging bumps are larger than
those for persistent bumps, which are larger than those for fade-out
activity bumps. Specifically, insufficient local excitation (in nS), G� �
32, leads to fade-out; strong recurrent excitation, 32 � G� � 35,
ensures a persistent bump; and excessive recurrent excitation, G� �
35, results in merging of activity bumps.

Working memory capacity estimation using
change-detection tasks
In addition to the DRTs, the CDT is an alternative experimental
scheme widely used to assess WM capacity. However, it is not
trivial to base the change-detection performance on that of
DRTs, because a CDT includes three stages: (1) sample stage, for
encoding the visual inputs; (2) retention stage, for working mem-
ory; (3) retrieval stage, for a decision upon the memory, and any
of these stages can independently influence the post hoc perfor-

Figure 4. The effects of delay duration on performance. A, Same sample trials as in Figure 2 A, except shown for a 9 s delay. For
a set size, 4, near WM capacity (lower left), bump fade-out or merging may occur late in the delay. B, Top, WM capacity depends on
the delay duration and the E-E connections (left for wide; right for narrow connectivity). Bottom, SD increases as a function of set
size for different delay durations, with wide (left) or narrow (right) connectivity. The network performance is essentially indepen-
dent of the delay duration for small or large set size. However, for an intermediate set size, the performance of the network
deteriorates with a prolonged delay period, as found in the human experiment (Zhang and Luck, 2009). C, The set size at which SD
reaches a threshold level (10°) is linear with WM capacity for all the conditions considered, different delays, and narrow and wide
connectivities.
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mance in the detection task. The previous research exhibits either
that the sample stage plays a bottleneck role of limiting the num-
ber of the encoded items in memory in a bottom-up manner via
attention, and thus the working memory capacity (Zhang and
Luck, 2008; Buschman et al., 2011), or that retrieval process af-
fects the detection accuracy through an inhibitory reciprocal net-
work (Johnson et al., 2009), nevertheless, little has been unfolded
from WM retention process per se. The previous behavioral ob-
servation (Basile and Hampton, 2011) demonstrates that the psy-
chometric curves from CDTs mimic that from DRTs; one can
therefore predict that change-detection performance would de-
crease with increasing the set size (Luck and Vogel, 1997; Vogel et
al., 2001; Wilken and Ma, 2004; Basile and Hampton, 2011;
Elmore et al., 2011). To test this hypothesis, we performed a
change-detection task with different set size (Fig. 8).

In this CDT, the set size of the cue array is the same as that of
the test array. The network reports that the test array is the same
(match) as or different (nonmatch) from the cue array. In half of
the trials, we used the test arrays which are identical to the cue
arrays, namely same trials (the amplitude of change is 0°; Fig. 8A,
top), while in the other half of the trials, one color in the cue array

is changed to a color with an amplitude from 10° to 90° away from
its original value, namely diff trials (nonmatch; Fig. 8A, bottom).
The probability to report match is obtained from a downstream
match-nonmatch decision neural circuit (Fig. 8B; Engel and
Wang, 2011). In simulations, we found that hit rate decreases and
false-alarm rate increases as a function of set size (Fig. 8C), which
is consistent with the behavioral observations (Wilken and Ma,
2004, their Fig. 4). Psychometric curves shows the probability to
respond to diff as a function of the amplitude of change, ��in �
�test�, for different set sizes (Fig. 8D). Of note, when the amplitude
of change is small, e.g., ��in � �test� � 10°, the change-detection
performance is improved as the set size increases, implying that
“similarity” could improve the change-detection performance in
some parameter regime. When the amplitude is large, e.g., ��in �
�test� � 50°, the psychometric curves are saturated, and the per-
formance curve from CDT mimics that from DRT (Fig. 8E)
(Wilken and Ma, 2004; Basile and Hampton, 2011; see also the
comparison between the change-detection tasks with different
amplitudes of change by Fougnie et al., 2010). Overall, our sim-
ulations demonstrate that the change-detection performance
would decrease when the set size increases, which agrees with the
predicted performance in DRTs in Figure 5, B and C.

Similarity effect on working memory performance
Our model exhibits two distinct mechanisms underlying the de-
crease of memory precision with the increase of WM loads or
delay duration in DRT: fade-out (complete loss of stored infor-
mation), and merging (more quantitative blurring of stored in-
formation). However, a misreporting error from merging can

Figure 5. Performance fit using different models. The simulation uses the wide-connectivity
network and random cue arrays. A, Typical response offset histograms for set size 3 and 6 (left
and right, respectively) with 1 s delay, fitted by discrete-slot model (Pm and s.d., red line) and
our model (S.D., green line). B, Pm and Pc decrease as a sigmoid function of set size (delay
duration is 1 s). Pc at high threshold (blue line) decreases more smoothly than that at low
threshold (black line), which resembles Pm. C, s.d. and S.D. increase as a sigmoid function of set
size (delay duration is 1 s). s.d. reaches a plateau as set size is �4 (capacity). D, Pm and Pc

decrease as a function of delay duration (set size is 4 at the capacity); Pc at low threshold is nearly
constant against the time. E, s.d. and S.D. increase as a function of delay duration (set size is 4 at
the capacity); s.d. is nearly constant against the time.

Figure 6. Dependence of fade-out and merging of mnemonic activity bumps on set size. The
fraction of mnemonic activity bumps that fade out (black) or merge with each other (gray)
during a 9 s delay is plotted as a function of set size. When set size is below WM capacity (3 in A
with wide connectivity, 6 in B with narrow connectivity), activity bumps seldom fade out or
merge. For a set size above WM capacity, the probabilities for merging and fade-out increase
sharply. With a sufficiently large set size, a plateau is reached where the sum of the fade-out and
merging probabilities is �100%, hence an activity bump either fades out or merges with
another bump.

Wei et al. • Mechanism of Limited Working Memory Capacity J. Neurosci., August 15, 2012 • 32(33):11228 –11240 • 11235



easily be overlooked in analysis of a DRT with
a minimum distance �24°, using binned data
(Bays et al., 2010). We thus proposed two test-
able tasks to investigate merging or similarity
effect on the WM performance.

First, we investigated the merging
process using 2-item cues with different
similarity and found that (1) merging
can take place given a long delay (�8 s)
when the items are of the weak similar-
ity (100°; Fig. 9A); (2) merging leads the
memory traces bias to the convergent
side (Fig. 9B), where similarity of items
gets enhanced (still 2 items), and net-
work could thus confuse one another in
a CDT using test arrays which are simi-
lar to the cue arrays (Fig. 8), e.g., purple
to blue (Elmore et al., 2011).

We then conducted a Lin and Luck
(2009) CDT (Materials and Methods), us-
ing three types of the cue arrays, namely
far (low-similarity), close (high-similarity),
far�close, and three types of the test ar-
rays, namely same, diff1 (nonconvergent
side), diff2 (convergent side; Fig. 9C). In
simulations, merging occurs only between
the high-similarity items. Consistent with
2-item-cue result, the memory traces of
high-similarity items converge to an in-
termediate level, while that of a low-
similarity item drifts around the cue (Fig.
9D). As a result, the distribution of re-
sponse offset of the high-similarity items
biases to the convergent side, implying an
increase (decrease) of the distance be-
tween the cue and test arrays for diff1
(diff2, respectively) trials, while that of the
low-similarity items is centered at zero.
One can thus argue that the similarity
would show a great effect on the tests of
diff1 and diff2, but little on that of same.
To test this, we assessed the probability of
choosing same for each trial using a
downstream match-non-match decision
circuit (Fig. 8B). Figure 9E demonstrates
that all three types of trials exhibit similar
performance in the same test; trials with
high similarity show a better performance
in the diff1 test, which resembles the be-
havioral observation that similarity im-
proves the performance in a Lin and Luck
(2009) task, whereas the similarity deteri-
orates the performance in the diff2 test.

To conclude, we proposed testable tasks to detect the merging in
WM delay, and showed that similarity in cue arrays can either im-
prove (Johnson et al., 2009; Lin and Luck, 2009) or impair (Elmore et
al., 2011) the detection accuracy, mainly relying on the post-WM
comparison process (compare also performance curves in DRT and
CDT in Fig. 8E; Hollingworth, 2003; Mitroff et al., 2004).

Discussion
In this work, we carried out a systematic study of WM capacity using
a spiking network. We found that the model actively maintains the

multiple objects with an analog feature using concurrent activity
bumps and reproduces the salient characteristics of performance in
visual WM tasks (Bays and Husain, 2008; Zhang and Luck, 2008,
2009; Anderson et al., 2011). The spatial extent (	) and the strength
(J�) of recurrent synaptic excitation greatly affect WM capacity
(Wang et al., 2011), in contrast to or complement with previous
work that the spatial extent of lateral inhibition determines WM
capacity (Macoveanu et al., 2006; Edin et al., 2009). We also identify
two distinct dynamical effects limiting WM capacity, namely exces-
sive (respectively insufficient) recurrent excitation leads to a merging
(respectively fade-out) of the activity bumps.

Figure 7. Dynamics of persistent, fade-out, and merging activity bumps in WM delay. The network has a narrow connectivity.
A, Spatiotemporal activity in response to a brief stimulus of uniform cue arrays with 6 items (capacity). All activity bumps persist
throughout the delay. White lines are memory traces. The spatial distribution of pyramidal cells’ firing rate (last 1 s in the delay)
shows a bell-shaped profile (activity bump). B, Same as in A except for a set size above WM capacity. Two bumps (67.5° and 337.5°)
fade out, and two bumps (247.5° and 292.5°) merge into one wide bump. The other bumps persist throughout the delay. The
activity profile shows a wide plateau for the merging bumps and comparatively sharp peaks for the persistent bumps. C, Firing
activity of single neurons marked as a, b, and c in B. Left, Neurons near the peak of a persistent bump (22.5°) spike at a high rate
in the cueing stage and show persistent activity at �50 Hz during the delay. Middle, Neurons in a fade-out bump (67.5°) abruptly
drop their activities in the middle of the delay, implying a sudden death of the corresponding item. Right, Firing activity of neurons
(from 247.5° to 292.5°) within and between two bumps that eventually merge into one. Neurons within bumps (e.g., red) behave
in a manner similar to those in the left panel. Neurons at the edge of bumps (e.g., yellow) are not boosted by the cue stimulus, but
their firing rates gradually ramp up to a stable level during the delay. Neurons in the middle of two bumps (e.g., dark green,
�270°) spike at a low rate in the early phase and suddenly jump to persistent activity in the late delay. D, E, The feedback dynamics
between neural firing and recurrent excitatory drive (data from B). D, Instantaneous average firing rate, R(t), of each bump as a
function of time. M, P, and F denote merging, persistent, and fade-out bumps, respectively. R(t) values of fade-out bumps suddenly
drop to 0 Hz at a random time in WM delay as an all-or-none process. R(t) values of persistent bumps stay at �25 Hz with small
fluctuations. R(t) values of merging bumps gradually increase (black) or jump (yellow) to �45 Hz after merging. E, Instantaneous
average excitatory synaptic conductance, G(t), of each activity bump as a function of time. G(t) values of fade-out bumps quickly
decay to �28 nS preceding the sudden decreases of R(t); G(t) values of merging bumps increase above 35 nS (larger than the
maximum value of G(t) of persistent bumps) preceding the merging process. F, The average firing rate R� plotted against the
average excitatory synaptic conductance G� for different activity bumps (from 100 simulations using the same network and cue
arrays as those in B). Three activity groups can be clearly discerned: merging bumps (blue) have high R� and G�, while fade-out bumps
(black) have low R� and G�.
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Reconciling discrete-slot and shared-resource models in a
neural circuit model
Two models have been proposed to understand WM capacity
based on the psychophysical observations, i.e., discrete-slot
model, wherein the capacity originates from the number of dis-
crete memory slots (Luck and Vogel, 1997; Zhang and Luck,
2008) and shared-resource model, wherein the capacity is con-
ceptually limited by a constant memory resource (Wilken and
Ma, 2004; Bays and Husain, 2008). For discrete-slot model,
Lisman and Idiart (1995) and Raffone and Wolters (2001) sug-
gested that items are maintained by oscillatory activity across
populations. It has been observed that neuronal activity about
items in WM is enhanced at specific phases of gamma cycle
(Siegel et al., 2009). However, the non-overlapping enhanced
phases may result from the sequential presentation of the items.
Furthermore, if the memorized items were encoded as the differ-
ent non-overlapping phases, the interference between them
would not be observed in experiments. Alternatively, our model
provides the neural mechanism underlying discrete-slot and
shared-resource models without considering phase code.

Behaviorally, our model offers a unifying explanation for
seemingly incompatible features from the two contrast models.
In the psychological studies, the discrete-slot model predicts a
hard limit of WM, where memory resolution decreases as a bilin-
ear function of set size, while shared-resource model predicts a
monotonic decline (Anderson et al., 2011). Our model exhibits
the hard limit of WM capacity in a broad parameter region. How-
ever, for the network with narrow connectivity, this hard limit
could increase to a large number, therefore the shared-resource-
like behavior is observed, using random cue arrays. Furthermore,

when the set size exceeds WM capacity, some bumps fade out
suddenly, rather than a gradual exponential decay during WM
delay. The fade-out implies the “sudden death” of WM in human
experiments, which strongly supports the discrete-slot model
(Zhang and Luck, 2009) but is hardly accounted for by the
shared-resource model (Huang, 2010). While, with randomly
distributed cues, correct rates and WM resolutions smoothly de-
crease, which was taken as strong evidence for shared-resource
model (Bays and Husain, 2008). Finally, we found the interfer-
ence between similar items, which only supports shared-resource
model (Wilken and Ma, 2004; Elmore et al., 2011), but would be
hardly incorporated in the discrete-slot model. Of note, in the
broad parameter region, these two behavioral features, sudden
death and “interference,” could coexist in our model; the proba-
bility of sudden death (respectively interference) increases in a
network with narrow (respectively wide) connectivity. Therefore,
our model provides a hybrid view for WM capacity, that the cue
items are memorized into different chunks (“activity bumps”);
items within the same chunk shows shared-resource-like behav-
iors (“merging bumps”), while chunks behave like discrete-slots
(“fade-out” from through global inhibition; Buschman et al.,
2011; Machizawa and Driver, 2011).

Besides the behavioral observations, we also found neural ev-
idence for reconciliation of these two models. First, the overall
activity of memory neurons remains nearly constant despite the
fade-out and merging of bumps as increasing WM loads, agree-
ing with the neurophysiological observation that the average fir-
ing rate of the prefrontal cortex neurons of behaving monkey is
roughly identical using different number of cues during WM
maintenance (Siegel et al., 2009). Second, a limited WM resource

Figure 8. Performance as a function of size set in a change-detection task. A, Experimental scheme of a change-detection task. In each trial, network views a cue array (with 2, 4, 6 or 8 colors) and
a test array (with the same set size as the cue), separated by a 1 s delay, and identifies whether they are the same. In half of the trials, the test arrays are identical to the cue arrays, namely same trials,
where the amplitude of change is 0°, while in the other half of the trials, one color in the cue array is changed to a color with an amplitude from 10° to 90° away from its value, namely diff trials. B,
A downstream match-nonmatch neural circuit underlies the probability of responding to same. C, Hit rate decreases and false-alarm rate increases as a function of set size. D, Psychometric curves
show the probability to respond to different as a function of the amplitude of change, ��in � �test�, for different set sizes. E, Performance curve from CDT mimics that from DRT, showing that the
change-detection performance (the probability of correct response) would decrease when the set size increases.
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Figure 9. Behavioral manifestation of merging in the change-detection task and free-recall task. A, Merging happens even when two cues are sufficiently separated from each other:
�in,1 � 130° and �in,2 � 230° (white arrows) in DRTs. Two stimuli evoke two activity bumps, which eventually merge into a single wide bump. Therefore, the reports bias to the center
of �in,1 and �in,2. B, The distribution of the difference between the report and the original cue, �in,2 � �out,2 or �out,1 � �in,1 (�in,1 � �in,2), across 100 trials. A positive (respectively,
negative) distance from the original cue implies convergence (respectively, divergence) of two activity bumps. The distribution skews significantly to the positive side, indicating that
merging happens in a large amount of trials. Such a skewed distribution of reports can be tested in behavioral experiments. C, Experimental scheme of a change-detection task to test
merging. In each trial, network views a cue array (3 colors) and a test array, separated by a 1 s delay, and identifies whether they are the same. Three types of cues, i.e., far (low-similarity),
close (high-similarity), and far�close, and three types of tests, i.e., same, diff1 (divergent side), and diff2 (convergent side; changed colors in diff1 and diff2 are circled) are applied in the
task; the Lin and Luck (2009) task is a mixture of same (50%) and diff1 (50%) tests. D1, D2, A sample from far�close trials (2 greens � 1 blue) exhibits a merging process between 2
greens (a, b), the memory traces of which converge to an intermediate level (still greens); the memory trace of the blue (c) only drifts around its initial cue. D3, Distributions of the
response offset in different trials. That with low similarity (black bars) centers at 0°; that with high similarity (red bars) shows a strong bias to the convergent side (�0°). E, Performance
for each test. Low- and high-similarity trials show similar performance in the same test (upper left). High-similarity trials show a better performance in the diff1 test (upper right),
indicating that similarity of the cue array improves the change-detection performance in the Lin and Luck (2009) task (lower left), whereas it also shows that the similarity could
deteriorate the performance in the diff2 test (lower right).

11238 • J. Neurosci., August 15, 2012 • 32(33):11228 –11240 Wei et al. • Mechanism of Limited Working Memory Capacity



is shared by all activity bumps and can be reallocated during WM
delay (Bays and Husain, 2008). When the set size exceeds WM
capacity, local excitation within a bump may be insufficient, and
some activity bumps fade out, which leads to the reallocation of
its memory resources to other bumps; this may result in excessive
local excitation of some activity bumps and merging between
them. The merging and fade-out phenomena are correlated, as a
result of the “overload effect,” and thus a limited number of
activity bumps persist separately. Consequently, a continuous
recurrent (attractor) neural network endowed with normaliza-
tion exhibits a rich repertoire of dynamical effects compatible
with the discrete-slot and shared-resource models. Furthermore,
the normalization of neural activity is a general principle for sen-
sory information processing (Treue et al., 2000; Reynolds and
Heeger, 2009). Here we suggest that it is also a desirable property
of WM circuits (Buschman et al., 2011).

Role of recurrent excitatory connection in limited
WM capacity
Using a neural network with uniform connections onto and from
interneurons, we differentially assessed the impact of recurrent
excitatory connections on WM capacity. First, increasing J� en-
hances local iso-directional excitation, decreases long-range
cross-directional excitation, and thus monotonically boosts WM
capacity. While, an intermediate value of 	 can maximize the
WM capacity. A systematically analysis of the parameter space of
J� and 	 indicates that WM capacity is constrained between 2
and 7, consistent with human studies (Xu and Chun, 2006). Fur-
thermore, the E-E connections strongly affect the amount of
memory resources, as measured by the total width of activity
bumps and the mean population firing rate of pyramidal cells.
Using randomly versus uniformly distributed cues, we found that
the normalization is independent of the configuration of external
inputs. Therefore, for a given network connectivity, the total
amount of memory resources is roughly fixed, and different ex-
ternal inputs lead to a different dynamical allocation of resources.
Previously, Edin et al. (2009) showed that WM capacity is limited
by lateral inhibition, and top-down excitation could rescue a
fade-out activity bump. Our work is complementary, suggesting
that the recurrent synaptic excitation greatly affects, perhaps even
predominantly controls, the limited capacity of a WM circuit.

Similarity effect on change-detection tasks
In our model, a network could show confusable memory slots,
using random cue arrays for a set size below capacity, which
would result from merging of neural subpopulations storing dif-
ferent items. Merging skews the response offset distribution to
the convergent side, and maintains high-similarity objects with
poor precision. Consequently, merging causes low Pc as increas-
ing set size in CDTs (Luck and Vogel, 1997; Wilken and Ma,
2004). However, for a given set size of cue arrays, with the differ-
ent similarities, we found a counterintuitive phenomenon that
similarity improves the performance, when the test is placed on
the non-convergent side of merging (Lin and Luck, 2009). John-
son et al. (2009) provided a population firing-rate model leading
to the same prediction, which had a specialized and tuned net-
work scheme for the retrieval process; they applied the model to
behavioral experiments where the discriminability index d� is
larger with similar stimuli than disparate ones. Comparisons be-
tween two models are worthwhile. First, the prediction of their
model originates from the proposed mechanism of the match-
nonmatch decision circuit, rather than the WM retention per se.
Second, fade-out is the exclusive mechanism for WM capacity in

their model. When fade-out occurs, their model responded to
nonmatch, whereas a more reasonable alternative is to respond
randomly (since no memory trace is available to guide the re-
sponse). Furthermore, our biologically-based spiking network
(rather than an abstract population rate model) is required to
elucidate the detailed circuit dynamics underlying the limited
memory capacity during a retention delay.

To conclude, this study focused on delay-period dynamics of a
WM circuit, which limits storage capacity for a single feature; the
model can potentially be extended to a multi-feature version and
used to study the resource allocation over different features
(Fougnie et al., 2010). Although we did not explicitly investi-
gate the influence of the delay duration on CDTs, from the
result of DRTs, we could predict that the performance would
decay as increasing the delay duration (Magnussen et al., 1996;
Magnussen, 2000), e.g., in a sudden-death manner (Regan,
1985; Bennett and Cortese, 1996). Other factors may also con-
tribute to determine the WM capacity, such as the role of
selective attention during encoding stimulus items, i.e., bot-
tleneck effect (Awh and Jonides, 2001), interactions of the
distributed network perspectives of WM (Pessoa et al., 2002),
overlaps of neural representation for different items (Warden
and Miller, 2007) or synchronous oscillations (Siegel et al.,
2009). Regardless, this work revealed and highlighted a rich
repertoire of dynamical behaviors that unfold in time and
underlie the limited capacity of a WM circuit. It shows that a
shared-resource mechanism, using population coding in a
continuous network, can nevertheless capture behavioral
characteristics predicted by the discrete-slot model. Our work
therefore contributes to resolving a major debate in the field,
and shed new insights into the neurodynamical mechanism of
WM capacity.
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