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a b s t r a c t

Spatial navigation depends on the combination of multiple sensory cues from idiothetic and allothetic
sources. The computational mechanisms of mammalian brains in integrating different sensory modal-
ities under uncertainty for navigation is enlightening for robot navigation. We propose a Bayesian
attractor network model to integrate visual and vestibular inputs inspired by the spatial memory
systems of mammalian brains. In the model, the pose of the robot is encoded separately by two sub-
networks, namely head direction network for angle representation and grid cell network for position
representation, using similar neural codes of head direction cells and grid cells observed in mammalian
brains. The neural codes in each of the sub-networks are updated in a Bayesian manner by a population
of integrator cells for vestibular cue integration, as well as a population of calibration cells for visual
cue calibration. The conflict between vestibular cue and visual cue is resolved by the competitive
dynamics between the two populations. The model, implemented on a monocular visual simultaneous
localization and mapping (SLAM) system, termed NeuroBayesSLAM, successfully builds semi-metric
topological maps and self-localizes in outdoor and indoor environments of difference characteristics,
achieving comparable performance as previous neurobiologically inspired navigation systems but
with much less computation complexity. The proposed multisensory integration method constitutes a
concise yet robust and biologically plausible method for robot navigation in large environments. The
model provides a viable Bayesian mechanism for multisensory integration that may pertain to other
neural subsystems beyond spatial cognition.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Simultaneous localization and mapping (SLAM), which ad-
dresses the problem of constructing a spatial map of an un-
known environment while simultaneously determining the mo-
bile robot’s position relative to this map, is regarded as one of the
key technologies in mobile robot navigation (Stachniss, Leonard,
& Thrun, 2016). The robot, therefore, needs sensors to perceive
the environment for the purpose of navigation without external

✩ The authors would like to thank the support from the National Key Research
and Development Program of China (NO. 2016YFC0801808); Natural Science
Foundation of China (NO. 51679213); CAS Pioneer Hundred Talents Program,
China (NO. Y8F1160101); and the State Key Laboratory of Robotics, China (NO.
Y7C120E101).

∗ Corresponding author.
E-mail addresses: zengtaiping@fudan.edu.cn (T. Zeng), tangfengzhen@sia.cn

(F. Tang), jidaxiong@zju.edu.cn (D. Ji), bailusi@bnu.edu.cn (B. Si).

positional cues such as GPS, and integrate the sensory informa-
tion into a coherent metric or topological map representation
of the environment (Nüchter, Lingemann, Hertzberg, & Surmann,
2007; Tully, Kantor, & Choset, 2012). However, available sensors
are usually noisy and unreliable. Thus, multiple different types
of sensors are required to gain better integrated information for
navigation (De Almeida, Araújo, Dias, & Nunes, 1995). How to
integrate multiple sensory cues to achieve accurate navigation is
one of the key challenges in robotics research.

In order to solve the SLAM problem effectively and efficiently,
researchers investigate the mechanisms adopted by animals in
navigation (Llofriu et al., 2015; Rolls & Stringer, 2005; Strösslin,
Sheynikhovich, Chavarriaga, & Gerstner, 2005), and seek inspira-
tions to achieve better algorithms for robot navigation (Barrera
& Weitzenfeld, 2008; Cuperlier, Quoy, & Gaussier, 2007; Milford
& Wyeth, 2008; Milford, Wyeth, & Prasser, 2004; Mulas, Waniek,
& Conradt, 2016; Sünderhauf & Protzel, 2010a; Tang, Yan, & Tan,
2017; Zeng & Si, 2017). For a review, see Madl, Chen, Montaldi,
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and Trappl (2015). As a matter of fact, many animals show over-
whelming navigation capabilities as compared to robots. They are
capable of traveling long distances and navigating in complex
environments searching for food, and then returning to their
nests often in shortcuts (Mandal, 2018). Studies have shown that
several types of spatially responsive neurons in the neural system
are involved in animal navigation, namely place cells in the hip-
pocampus (O’keefe & Conway, 1978; O’Keefe & Dostrovsky, 1971),
head direction (HD) cells (Taube, Muller, & Ranck, 1990) and
grid cells in the medial entorhinal cortex (MEC), presubiculum
and parasubiculum (Boccara et al., 2010; Hafting, Fyhn, Molden,
Moser, & Moser, 2005). HD cells fire strongly only when the
animal’s head points to specific directions. The activity of HD
cells constitutes an internal allocentric representation of the head
directions of the animal. HD cells are considered to provide com-
pass information for animals. In two dimensional open field, place
cells become active whenever the animal enters specific locations
in the environment. The sparse neural codes of place cells readily
enable them to function as cognitive map of the environment.
Grid cells fire at regularly spaced locations which collectively
define hexagonal lattices. The grid codes of different grid cells
turn out to be scaled, rotated and translated relative to each other,
and could provide a metric system for navigation. Moreover,
two primary mechanisms have identified in animal navigation,
i.e. path integration and landmark calibration (Etienne, Maurer,
& Séguinot, 1996; Milford, Wiles, & Wyeth, 2010). By path in-
tegration, animals update their internal spatial representations
using self-motion cues such as vestibular inputs. Through the
mechanism of landmark calibration, the internal representations
of self location are corrected by detecting familiar landmarks in
the environment. In brief, place cells, HD cells and grid cells are
the key neural basis for cognitive map during path-integration
based and landmark based navigation (Grieves & Jeffery, 2017).
Place cells of the mammalian brain provide flexible graph-based
map representations, while HD cells and grid cells deliver metric
encoding of orientation and position respectively (Moser, Kropff,
& Moser, 2008; Moser & Moser, 2008). These cells are neu-
ral substrates for the integration of multisensory cues during
navigation.

However, in large natural environments, both path integration
and landmark calibration are faced with uncertainty: the path
integration process is subject to accumulation error, while land-
mark calibration is undermined by perceptual ambiguity. How
these spatial selective cells deal with uncertainty of sensory in-
formation when navigating in large scale environments is availing
for robot navigation.

Both vestibular and visual inputs carry information about the
animal’s heading directions and spatial locations in the environ-
ment. Thus, neural navigation system integrates both vestibular
and visual inputs to determine the animal’s head directions or
positions (Chen, DeAngelis, & Angelaki, 2013; Gu, Angelaki, &
DeAngelis, 2008). This kind of multisensory integration is also
found in many other sensory modalities. Visual and proprio-
ceptive cues are combined for the perception of hand position.
Motion and texture cues are integrated for sensing depth in-
formation. Visual and auditory cues are combined to determine
object locations (Chandrasekaran, 2017).

Neurophysiological experiments and theoretical modeling
have revealed that neural systems primarily combine sensory
information from self-motion cues and visual cues to estimate
the animal’s heading in a near Bayesian optimal manner (Zhang &
Wu, 2013). Extensive studies have been conducted to understand
this computation mechanism of sensory integration in animal
spatial navigation.

Bayesian multisensory integration could be achieved by recip-
rocally connected attractor networks, each maintaining an esti-
mate of head directions according to an independent cue, either

the visual or the vestibular cue (Zhang & Wu, 2013). The dis-
parity between cues could be represented by attractor networks
connected by opposite isomapping, so that multisensory segrega-
tion of sensory cues is realized concurrently in a Bayes-optimal
manner (Zhang, Wang, Wong, & Wu, 2016), enabling animals to
integrate multiple cues and simultaneously sense the difference
between cues. Both the saliency of visual cues and the synap-
tic plasticity between networks affect multisensory integration.
Plastic remapping of visual cues on the HD cells layer shifts the
preferred directions of HD cells due to multiple reliable experi-
ences (Knight et al., 2012). However weaker visual cues fail to
remap the preferred directions of HD cells (Knight et al., 2012).
Attractor network model has been proposed to account for the
interaction between landmark and vestibular cues (Page et al.,
2013). Here, we hypothesis that the same Bayesian inference
mechanism of HD cells maybe also exist in grid cells to represent
spatial locations in a torus or a twisted torus attractor network.

Although biological plausible attractor network models have
been developed to demonstrate probabilistic computational
mechanisms in the brain, as far as we know, there exist only a
few neurobiologically plausible Bayesian models to implement
multisensory information integration in SLAM system.

In this paper, we present a novel neurobiologically inspired
Bayesian attractor network model to demonstrate the potential
that could be brought to robot navigation systems by emulating
the computational mechanisms of animal navigation. We employ
probabilistic methods to model neural population coding. The
activity of HD cells in a ring attractor network is represented
by a one-dimensional Gaussian distribution with periodic bound-
ary conditions (Ben-Yishai, Bar-Or, & Sompolinsky, 1995; Zhang,
1996). The response of grid cells in a torus attractor network with
a single activity peak is modeled by a two-dimensional Gaus-
sian activity packet with periodic boundary conditions (Guanella,
Kiper, & Verschure, 2007). Integrator cells are introduced to inte-
grate either angular velocity or translational velocity. Calibration
cells are incorporated to integrate visual inputs. Conflict between
cues is resolved by competitive dynamics of the two populations.
We implemented our model in a SLAM system and demonstrated
its performance on an open-source dataset of 66 km car journey
in a 3 km x 1.6 km urban area (St Lucia 2007 dataset) and on an
iRat miniature robot platform in a small-sized maze (iRat 2011
Australia dataset).

The contribution of this paper is threefold. First, a novel neu-
robiological Bayesian attractor network model is proposed for
multisensory integration inspired by neural computation mech-
anisms of head direction cells. The model reproduces similar cue
conflict resolution behavior as that of head direction cells in
multi-cue integration tasks. Second, the model adopts parametric
representations of network population activities, in the form of
Gaussian distributions, and only needs to update a few variables
of the network activities, resulting in constant computational
complexity. The constant computational complexity of the model
renders its advantage in the application in energy-critical situa-
tions such as unmanned aerial vehicles. Third, the multisensory
integration mechanism is incorporated into a monocular SLAM
system for autonomous robot navigation in large scale environ-
ments. By demonstrating successfully on real world datasets, the
proposed Bayesian multisensory integration method is robust
for robot navigation in environments of various sizes, differ-
ent sensory noise and uncertainty, as ubiquitously faced dur-
ing the exploration of large natural environments. In summary,
the proposed neurobiological Bayesian attractor network model
takes advantage of the computational mechanism of spatial mem-
ory neural circuits, and sheds light on further developing novel
trustable and interpretable neural network models for robot nav-
igation tasks.
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The rest of this paper is organized as follows. In Section 2,
we briefly review the related work of visual SLAM systems and
neurobiologically based robot navigation systems. We derive a
Bayesian theoretical frame for HD cells and grid cells models
in Section 3. Sections 4 and 5 present the Bayesian attractor
network and the SLAM system. The detailed results are reported
in Section 6. Section 7 discusses the results and future works, with
a brief conclusion in Section 8.

2. Related work

Our work has roots in visual SLAM and neurorobotic naviga-
tion systems. In this section, we briefly review the state-of-the-
art techniques in these two research areas.

2.1. Visual SLAM

As mentioned earlier, SLAM is a method to simultaneously es-
timate the pose of a robot and construct the map of an unknown
environment while the robot is perceiving the environment with
on-board sensors. Over the past 30 years, the SLAM research com-
munity has witnessed spectacular progress, enabling the applica-
tions of this technology in large scale natural environments and
also a transition of it to industry. At an early age of SLAM (1986–
2004), probabilistic models were introduced to solve the SLAM
problem, including extended Kalman filters (e.g. MonoSLAM),
Rao–Blackwellized particle filters (e.g. FastSLAM), and maximum
likelihood estimation (Thrun, Burgard, Fox, & Arkin, 2005). In
the following stage (2004–2015), major efforts were devoted to
understanding the fundamental properties of SLAM (i.e. observ-
ability, convergence, and consistency), proposing efficient SLAM
solvers, and developing open-source SLAM libraries. The SLAM
research now enters into a robust perception age, with visual
SLAM being a representative. During this age, attempts are fo-
cused on robust performance, high-level understanding, resource
awareness, and task-driven perception (Cadena et al., 2016).

Visual SLAM, as suggested by its name, takes advantage of
image as a primary source of information for localization and
mapping. This type of SLAM methods can be divided into two
classes: direct and indirect methods, according to the way how
the image information is utilized. Indirect visual SLAM systems
first extract features from the images captured by a camera, and
then use the features to infer the pose of the camera and subse-
quently build a map. Vision was brought into SLAM community
by A. J. Davison’s seminal work called MonoSLAM (Davison, Reid,
Molton, & Stasse, 2007), which extracts image features to repre-
sent landmarks within the Extend Kalman Filter (EKF) framework.
This work becomes a standard framework for the implementation
of visual SLAM systems. However, the computation load of EKF
based visual SLAM increases substantially as the size of the map
grows, limiting its applicability in large scale environments. An-
other feature-based SLAM algorithm called Parallel Tracking and
Mapping (PTAM) is proposed to parallelize the motion estimation
and mapping tasks (Klein & Murray, 2007). This algorithm relies
on performing keyframe bundle adjustment instead of filter-
ing, leading to higher computational efficiency. Although PTAM
achieves satisfactory real time performance in small environ-
ments, its scalability does not allow direct application in large
scale mapping. ORB-SLAM and ORB-SLAM2 employ improved
image feature detectors and descriptors over those used in PTAM,
leading to better performance than that of PTAM (Mur-Artal,
Montiel, & Tardos, 2015; Mur-Artal & Tardos, 2016). These two
methods parallelize tracking, mapping and loop closing to achieve
impressively consistent localization and mapping.

Instead of extracting features, direct SLAM systems, on the
contrary, directly perform matching in the raw image space.

Dense tracking and mapping (DTAM) is the first direct visual
SLAM being able to run in real time with a GPU (Newcombe,
Lovegrove, & Davison, 2011). Large-Scale Direct Monocular SLAM
(LSD-SLAM) employs direct tracking by image-to-image align-
ment to build a semi-dense map by depth estimation at pixels
solely near image boundaries. This algorithm is also able to run
in real time on a CPU (Engel, Schöps, & Cremers, 2014). Recently,
deep recurrent convolutional neural networks are trained to infer
poses and uncertainties from a sequence of raw images by auto-
matically learning effective feature representations (Wang, Clark,
Wen, & Trigoni, 2018).

2.2. Neurobiologically inspired robot navigation

Animals, especially mammals, such as bats and whales, show
amazing navigation ability (Horton et al., 2011; Tsoar et al., 2011).
They are able to orient in large scale, complex, and dynamic
environments for a very long time. A cognitive map of the en-
vironment, i.e. an internal map-like representation in the brain,
has long been proposed to support their superior navigation
abilities (Tolman, 1948). Place cells and HD cells are sufficient
to represent the pose of the animal including head directions
and locations. Grid cells form multi-resolution representations
of the position of the animal, and could provide better spatial
information than place cells do (Mathis, Herz, & Stemmler, 2012).

The mechanisms of animal navigation have long motivated
robot navigation. It is especially rewarding to bridge the gap
between neuroscience and robotics research. Many works have
been carried out to identify the critical functional components
of robot navigation systems and their corresponding structures
in neural systems. Research along this line has enriched sub-
stantially our understandings of the computational principles of
animal navigation systems and has led to design better robot
navigation algorithms for natural environments. Dated back to
1997, a model of hippocampal place has been proposed for a
robot to navigate in open-field environments of various shapes
by Neil Burgess and John O’Keefe (Burgess, Donnett, Jeffery, &
John, 1997). A navigation model inspired by HD cells and place
cells was demonstrated on Khepera robot in a small arena by
Gerstner’s group (Arleo & Gerstner, 2000). This work is followed
by Strösslin et al. (2005), incorporating unsupervised Hebbian
learning to form a cognitive map of the environment. A complex
and modular computational model including navigation related
neurobiological entities is proposed to learn or unlearn goal lo-
cations through changing rewards by Barrera and Weitzenfeld
(2008). In Cuperlier et al. (2007), place cells are coupled to create
abstract transition cells, which explicitly encode spatiotemporal
transitions experienced by the robot. Its follow-up work devel-
oped a computational model composed of multisensory place
cells by merging the activities of visual place cells and grid
cells (Jauffret, Cuperlier, & Gaussier, 2015). This model has been
demonstrated to deliver effective navigation ability in a real robot
platform. RatSLAM has been developed for long term robot nav-
igation tasks in large scale environments by employing abstract
pose cells to represent the conjunction of HD and positions (Mil-
ford & Wyeth, 2008; Milford et al., 2004). This work is upgraded
to OpenRatSLAM, a package of open-source SLAM libraries and
publicly available datasets, making great contributions in pushing
forward the development of SLAM (Ball et al., 2013). Related to
our work, Sünderhauf and colleagues linked the neural network
model of pose cells to Bayesian inference, and derived a novel
filter scheme for the abstract pose cells in RatSLAM (Sünderhauf
& Protzel, 2010a, 2010b).
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Fig. 1. Bayesian attractor network architecture of the model and information flow char. HD cells and grid cells are organized by the same computational mechanisms.
Information from vestibular cues and visual cues are integrated by the populations of integrator cells and calibration cells respectively. Cue conflict is resolved by
the two populations by mutual and global inhibition, resulting in single-peaked activities in the networks. The directions encoded in the HD cell network are used
by the grid cell network to encode the locations of the agent. A cognitive map is built based on the location information provided by the grid cell network.

3. The Bayesian cue integration framework

Accumulating neurobiological evidence has shown that brain
performs Bayesian inference in many cognitive tasks (Seilheimer,
Rosenberg, & Angelaki, 2014). In this paper, we propose a cue
integration framework based on Bayesian inference for robot
navigation task. The probability distributions on head directions
or locations are inferred by combining multiple cues together,
namely vestibular cue cve and visual cue cvi, so that the uncer-
tainty in motion and perception is taken into account for robust
representation of the pose.

Given the heading direction or location denoted by θ , the
likelihoods of perceiving visual or vestibular cues are described by
probability distributions p(cvi|θ ) and p(cve|θ ) respectively. Since
the noise of visual and vestibular cues are mutually indepen-
dent, according to Bayes’ theorem, the posterior distribution of
θ with the presence of two cues, denoted by p(θ |cvi, cve), can be
expressed as

p(θ |cvi, cve) ∝ p(cvi|θ )p(cve|θ )p(θ ), (1)

where p(θ ) is the prior probability. If there is no prior knowledge,
p(θ ) is uniform (Zhang & Wu, 2013), then (1) can be rewritten
as

p(θ |cvi, cve) ∝ p(cvi|θ )p(cve|θ ) (2)

Taking the time into consideration, we can merge the past
experience and the current evidence in an iterative manner:

pt (θ |cvi, cve) ∝ pt (cvi|θ )pt (cve|θ )pt−1(θ |cvi, cve), (3)

where pt−1(θ |cvi, cve) is the posterior distribution of θ up to
time (t − 1) (i.e. past experience), pt (cve|θ ) and pt (cvi|θ ) are the
likelihoods of perceiving cve and cvi (i.e. current evidence).

Since self-localization is decoupled into two separated pro-
cesses, namely path integration and landmark calibration, Eq. (3)
is spitted into two updates to integrate currently available cues
accordingly:

pt (θ |cvi, cve) ∝ pt (cve|θ )pt−1(θ |cvi, cve), (4)
pt (θ |cvi, cve) ∝ pt (cvi|θ )pt−1(θ |cvi, cve). (5)

Eq. (4) is to mimic path integration that updates the estimate
of θ using vestibular cues, while Eq. (5) is to perform landmark
calibration that updates the estimate of θ using visual cues. The
two updates on θ do not have to occur simultaneously, nor do
they have to follow a fixed order. In other words, pt−1(θ |cvi, cve)
in Eq. (4) may be the updated result of Eq. (5), and vice versa. The

superscript t − 1 here represents pre-update while t indicates
post-update. This notation is also applicable to the rest of this
paper.

4. The neurobiological Bayesian attractor model

Attractor dynamics is found to be one of the key computa-
tional mechanisms of spatial memory systems in the brain, such
as HD cells, grid cells and place cells (Knierim & Zhang, 2012). Due
to the recurrent connections, attractor neural networks require
heavy computation when the network size is large. In order
to reduce computational cost of attractor neural network, we
propose an abstract and concise model, discarding the details in
the connectivity between cells and in the currents into cells, yet
including both attractor dynamics and Bayesian cue integration
as essential computational mechanisms. The state of attractor
network is simplistically represented by Gaussian distribution,
while keeping the encoding properties of HD cells and grid cells.
The dynamics of attractor network is modeled by the update of
the mean and variance of Gaussian distribution.

4.1. Overview of the proposed model

As shown in Fig. 1, the proposed Bayesian attractor model is
composed of a network of HD cells and a network of grid cells.
Each network consists of a population of integrator cells and
a population of calibration cells, which receive vestibular cues
from MSTd area and visual cues from VIP area, respectively. In
the HD network, each population maintains a one-dimensional
Gaussian distribution with the mean being a representation of the
agent’s head direction, and the variance describing the reliability
of the corresponding cues. The two populations are intercon-
nected through mutual inhibition and global inhibition. The visual
cues and vestibular cues are then integrated through Bayesian
inference. Conflict between cues is solved by the competitive
dynamics between integrator cells and calibration cells. The pop-
ulation of integrator cells integrates the current evidence from
vestibular cues and the past experience from both vestibular cues
and visual cues. Under the periodic boundary conditions of the
HD neural space, the population maintains a bump or packet of
activity, similar to the activity state of a ring attractor. The agent’s
real angle of HD in the physical environment is represented by
the center of the activity bump. The population of integrator cells
holds and updates memories of head directions, mimicking the
ring attractor network of HD cells.
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A similar framework of Bayesian attractor network is pro-
posed to simulate the coding scheme of grids cells. However,
instead of one-dimensional Gaussian distributions, the two pop-
ulations, namely integrator cells and calibration cells, manipulate
two-dimensional Gaussian distributions on a neural space with
periodic boundary conditions. The two-dimensional Gaussian dis-
tributions maintained by the grid cells in the network represent
single-peaked activity bumps in torus attractor networks. Differ-
ent from previous works in which the neural space is twisted
to produce triangular firing patterns, our model does not focus
on reproducing neural responses exactly as those observed in
neurobiological experiments, but explores the potential to solve
real world spatial cognition problem based on neural encoding
mechanisms of spatial memory systems. Due to the periodic
boundary conditions, the bump center of the torus attractor rep-
resents the real location of the robot in the physical environment
up to a modulo operation.

In summary, HD cells and grid cells with single-peaked activ-
ities jointly represent the pose of the robot in the environment
and further a cognitive map of the physical environment could
be constructed.

4.2. Model of head direction cells

In this section, we present the Bayesian attractor model of
head direction cells in detail. For computational efficiency, the
activities of integrator cells and calibration cells are modeled
by Gaussian distributions, which represent the beliefs in head
directions. Due to the difference in the incoming cues to the
integrator cells and the calibration cells, their beliefs may not be
the same. Integrator cells and calibration cells of the HD network
separately maintain their beliefs in head directions. The belief of
each population has the following form

p(θ ) =
1

σ
√
2π

e−|θ−µ|2/2σ2
, (6)

where θ ∈ [0, 2π ) is the label of a cell. θ lies in a one-dimensional
neural space. |·| takes the difference of two angles on a circle.
The mean µ is the maximum likelihood estimation of the head
direction given by the population, and the variance σ 2 is the
uncertainty of the belief. With this parametric representation, it
is sufficient to update the four variables for the two populations
in the HD cell network, i.e. the mean and the inverse uncertainty
for each of the population in the HD network (ref Table 2).

4.2.1. Attractor dynamics
To resolve cue conflicts, the two populations interact by global

inhibition and mutual inhibition, endowing the whole network
with the behavior of attractor dynamics.

The global inhibition is formulated as follows:
1

(σ t
inte)2

=
E
W

1
(σ t−1

inte )
2 , (7)

1
(σ t

cali)2
=

E
W

1
(σ t−1

cali )
2 , (8)

where (σ t−1
inte )

2 and (σ t−1
cali )

2 are the uncertainty of the belief of the
integrator cells and the calibration cells before update, respec-
tively. 1/(σ t−1

inte )
2 and 1/(σ t−1

cali )
2 are the fisher information with

respect to head direction. W is the total fisher information and
works as a normalization factor:

W =
1

(σ t−1
inte )2

+
1

(σ t−1
cali )2

. (9)

E is a predefined constant, which is the total fisher information
with respect to head direction contained in the two population.

Since the fisher information with respect to head direction mea-
sures the extent to which the belief is peaked, we term it as head
direction reliability.

The mutual inhibition is to guarantee that there is only one
stable bump with single peak existing in the network over time.
The mutual inhibition between the two population is defined by

1
(σ t

inte)2
=

1
(σ t−1

inte )2
− ∆inte

1
(σ t−1

cali )2
, (10)

1
(σ t

cali)2
=

1
(σ t−1

cali )2
− ∆cali

1
(σ t−1

inte )2
, (11)

where ∆inte and ∆cali are the strength of inhibition to the inte-
grator cells and the calibration cells respectively.

Eqs. (7)–(11) implement competition between the reliability of
two populations. Under mutual and global inhibition, the network
converges to a prominent single-peaked activity bump and a
weak single-peaked activity bump. This competition behavior
resembles the dynamics of an attractor network. In order to let
the weak population recover at the time when reliable cues are
available, we set a lower bound value U for the reliabilities of the
two populations.

Depending on the relative magnitudes of reliability, the time
duration of competition varies. The competition allows the net-
work to temporally accommodate different beliefs, and reach
coherent representations by integrating more information. On top
of the attractor dynamics, the two populations undergo vestibular
cue integration and visual cue calibration, which are explained in
the following sections.

4.2.2. Vestibular cues integration
In this paper, path integration is not performed by network

mechanisms such as proposed in Si, Romani, and Tsodyks (2014)
and Zeng and Si (2017). Instead, activity bumps are updated by
directly shifting the means of the Gaussian distributions given the
information from vestibular inputs. Path integration denoted by
Eq. (4) is implemented as follows:

µt
inte = mod (µt−1

inte + νt∆t, 2π )

µt
cali = mod (µt−1

cali + νt∆t, 2π ),
(12)

where µt
inte and µt

cali are the mean encoded in the integrator
cells and the calibration cells. νt is the velocity from vestibular
or movement system. ∆t is the time interval between time steps
t and t−1. mod is the modulus operation in the domain of real
number, it returns the remainder and maps the new phase into
the range [0, 2π ).

Note that the uncertainty during path integration in this work
does not increase, which is different from classical probabilistic
SLAM.

4.2.3. Visual cues calibration
The activity of head direction cells is calibrated by familiar

visual cues. If the current view is observed previously, it excites
calibration cells according to Eq. (5):

ptcali(θ ) ∝ ptinject(θ ) p
t−1
cali (θ ), (13)

where ptinject(θ ) is the likelihood function, and describes the lo-
cation and the spread of the current injected from visual cues to
the network. Since the two distributions on the right hand side of
Eq. (13) are Gaussian by assumption, it can be implemented by

1
(σ t

cali)2
=

1
(σ t−1

cali )2
+

1
(σ t

inject)2
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2
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(σ t
inject)2

µt
inject, 2π

)
, (15)
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where 1/(σ t
inject)

2 is the reliability of the visual cue, µt
inject is the

location where the current is injected to the one dimensional
neural manifold of HD cells.

The combined belief of the head direction is then given by
merging the beliefs of both integrator and calibration cells

ptf (θ ) ∝ ptcali(θ ) p
t
inte(θ ). (16)

Using the Gaussian assumptions, Eq. (16) is given by
1

(σ t
f )2

=
1

(σ t
inte)2

+
1

(σ t
cali)2

(17)

µt
f = mod
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(σ t

f )
2

(σ t
inte)2

µt
inte +

(σ t
f )

2

(σ t
cali)2

µt
cali, 2π

)
, (18)

where 1/(σ t
f )

2 is the reliability and µt
f the center of the belief.

If the maximum likelihood estimation of the head direction
µt

f is close to the location of the current injection µt
cali, i.e. |µ

t
f −

µt
cali|< δ, where δ is a threshold, the visual cue has strong

calibration effect on the belief, and the decision that the agent
revisits a familiar location is made. This means a loop closure is
detected. In this case, the belief ptinte(θ ) of integrator cells is reset
by assigning the combined belief ptf (θ ) to ptinte(θ ). If, however,
the maximum likelihood estimation of the head direction µt

f is
very different from the location of the current injection, the belief
of the integrator cells is not reset by the combined belief. The
integrator cells and calibration cells continue integrating cues
and inhibiting each other. The reset of the belief ptinte(θ ) by
ptf (θ ) imitates the remapping of visual information onto the HD
cells (Knight et al., 2012; Page et al., 2013).

4.3. Model of grid cells

In this section, we extend the above HD cell network to model
grid cells. The same mechanism of HD cell network is used to
represent 2D locations. Similar to the HD cell network, the grid
cell network is composed of a population of integrator cells
and a population of calibration cells. Neuroscience recordings
have revealed that grid cells are distributed in multiple brain
regions, such as MEC, pre- and parasubiculum (Boccara et al.,
2010; Sargolini et al., 2006). Grid cells in these areas may function
differentially as calibration cells and integrator cells. Different
from HD cell network model, the grid cells in the model form 2D
torus attractors with single-peaked activity profiles. More specif-
ically, the activity of the integrator cells and the calibration cells
of the grid cell network is defined by two-dimensional Gaussian
distributions

p(x, y) =
1

2πσxσy
e−(|x−µx|2/2σ2

x +|y−µy|
2
/2σ2

y ), (19)

where x, y ∈ [0, 2π ) are the coordinates of the cells in the respec-
tive 2D neural manifold. (µx, µy) is the spatial phase encoded by
the cells. Due to the periodic boundary conditions of the neural
manifold, the spatial phase encodes the actual location of the
robot up to a modulo operation. The periodic torus structure
of the neural manifold provides one mechanism to map large
physical space into periodic neural representations. In this study,
we only use for each of the population of integrator cells and the
population of calibration cells one neural manifold. In this sim-
plest setup, the actual location of the robot can be recovered by
unwrapping the spatial phase considering the periodic boundary
conditions (e.g. through counting the jumps at the boundaries in
the whole history of the spatial phase). 1/σ 2

x and 1/σ 2
y are the re-

liabilities of spatial phase estimation in each dimension. Note that
we assume that the two dimensions of the spatial representation
in the model are independent, and therefore the cross-correlation
between the two dimensions vanishes, as shown in Eq. (19). This

Fig. 2. The software architecture of the NeuroBayesSLAM system. The sen-
sor/bagfile node provides images and odometry information. Visual odometry
provides velocity estimation for pure visual datasets. The local view cell node
determines whether the current view is familiar or not. Bayesian attractor
network node performs path integration and makes decisions of loop closures.
The experience map node generates the topological map.

assumption is reasonable under the conditions where sensory
cues are available for integration. Taking together, the grid cell
model boils down two four variables, spatial phase and reliability
of the two populations, for each spatial dimension, resulting in
eight variables (ref Table 2). Both the spatial phases and the
corresponding reliabilities of the two populations are updated in
the same way as those in the HD cell network. The translational
velocity input to the grid cell network is obtained by projecting
velocity signal to the head direction estimated by the HD cell
network.

5. Robotic implementation

To test the ability of the proposed Bayesian attractor model
in solving realistic SLAM problems, we implemented the model
in C++ language on Robot Operating System (ROS). Our SLAM
system is termed as NeuroBayesSLAM. Adopting some fundamen-
tal modules of the publicly available OpenRatSLAM system (Ball
et al., 2013), we organized the NeuroBayesSLAM system into five
nodes, as shown in Fig. 2, namely Sensor/Bagfile, Local View Cells,
Visual Odometry, Bayesian Attractor Networks, and Experience
Map. Detailed description of functionality of each node is given
as follows:

• The sensor, i.e. camera, captures the view that the robot can
observe and sends the view to the local view cells and visual
odometry node.

• The local view cells compare the view from the sensor
with visual templates stored by the local view cells, and
determine whether this view is familiar or not. If this view
is new, a new local view cell is created and added to the
system. The newly added local view cell is associated with
the visual feature of the view as a new local view template,
the head direction estimation of the head direction network
and the spatial phase estimation of the grid cell network.
The connections between the local view cell and the cells
in the HD cell network and grid cell are strengthened via
Hebb’s rule (Hebb, 1949). Instead, if the view is one that
the robot has encountered previously, the local view cell
associated with the current view can be reactivated and
injects energy into HD cells and grid cells through learned
connections via Eq. (13).
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Fig. 3. Screenshots of the NeuroBayesSLAM system running on the St Lucia
suburb dataset. (A) Neural activities of the integrator cells in the HD network;
(B) Neural activities of the integrator cells in the grid cell network shown as a
heat map. Activity from zero to maximum is color-coded from blue to red; (C)
Input visual scene of a road with ascending slop (top), the local view template
of the scene (middle), and the best matched template (bottom); (D) Experience
map. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

• The visual odometry node estimates angular speed and lin-
ear speed by comparing consecutive image arrays. If iner-
tial measurement unit (IMU) exists to provide self-motion
information for the robot, this node would not be enabled.

• The Bayesian attractor network node consists of the HD
cell network and the grid cell network proposed in
Sections 4.2 and 4.3, respectively. This node receives odom-
etry and view templates as inputs in the form of ROS mes-
sages. The velocity information drives the activity bumps
along ring manifolds in the HD cell network and torus
manifolds in the grid cell network to encode the pose of the
robot. The belief is also generated about whether creating a
new experience or closing a loop in the experience map.

• The experience map node generates a coherent semi-metric
topological map that includes many vertices connected by
edges. Every vertex is characterized by a local view cell, a
head direction phase coded by HD cells, and a location phase
coded by grid cells. Since locations are represented by the
phases on torus, infinite area can be mapped by grid cells
with periodic codes. When the distance between the current
phase on the torus and the phase of the previous vertex
is long enough to meet a threshold, the Bayesian attractor
network would send a ROS message to the experience map
node to create a new vertex and a new edge connecting it to
the previous vertex. When a loop closure occurs, a new edge
would be created to connect to an existing vertex. Then, a
graph relaxation algorithm (Duckett, Marsland, & Shapiro,
2002) is used to distribute odometry error throughout the
topological map, and a map readily readable to a human can
be provided to present the absolute location in the physical
environment.

Table 1
Values of parameters.
Parameter HD cells Grid cells

E 100 1
1

σ2
inject

40 0.4

∆cali 0.05 0.05
∆inte 0.005 0.005
U 0.001 0.001

Table 2
Initial values of the variables for integrator cells and calibration cells. The
variables of the grid cell populations are initialized as the same value for each
spatial dimension. For the ease of display, only the variables for one spatial
dimension are shown and the subscripts for spatial dimensions are omitted.
Variable HD cells Grid cells

1
σ2
inte

100 1

µinte 0 0
1

σ2
cali

10 0.1

µcali 0 0

Python scripts are written to visualize the live state of the
NeuroBayesSLAM system. The neural activity of HD cells and grid
cells, the visual inputs and the local view templates, and the
experience map are shown during running.

6. Results

We run the NeuroBayesSLAM system on two publicly avail-
able datasets, namely the St Lucia suburb dataset and the iRat
Australia dataset (Ball et al., 2013). For each dataset, we present
firing rate maps of example HD cells and grid cells and the
cognitive maps build by the system. For the St Lucia dataset,
we demonstrate cue conflict resolutions between visual cues and
vestibular cues when loop closures occur.

6.1. St Lucia suburb dataset

The St Lucia dataset was recorded in the suburb area of St
Lucia in Brisbane, Australia using a web camera mounted on a
vehicle (Ball et al., 2013; Milford & Wyeth, 2008). The trajectory
is 66 km long through a wide range of terrain types, and spans an
area of 3 km by 1.6 km in east–west and north–south directions,
respectively.

Fig. 3 shows the interface of the NeuroBayesSLAM system
running on the St Lucia dataset. The complete mapping process
is given by the Supplementary video S1. Key parameters and
initial values of the integrator and calibration cells used in the
system are summarized in Tables 1 and 2, respectively. Following
the findings in Butler, Smith, Campos, and Bülthoff (2010), more
weight is given to the vestibular cues than the visual cues in cue
integration. This is realized by assigning larger value to mutual
inhibition intensity ∆cali, as compared to ∆inte.

6.1.1. Neural representations
Example activities of HD cells and grid cells in the model are

shown in Fig. 4.
Panels A and C of Fig. 4 give the neural activities of the

integrator cells in the HD network and the grid cell network
respectively, at the beginning of the experiment, when the robot
was at the origin. The localized activity bumps represent the
belief of the robot’s pose. The head direction of the robot in the
physical environment is encoded by the center of the bump in
Fig. 4A. The width of the bump in Fig. 4A gives the uncertainty
of the belief. In a similar way, the center of the bump in Fig. 4C
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Fig. 4. The activities of the integrator cells of the HD cell network and grid
cell network in the NeuroBayesSLAM system. (A,C) In the beginning of the
experiment, the neural activities of the integrator cells of the HD network and
grid cell network are centered at the origins. (B,D) During navigation, the activity
bumps are updated to encode the pose of the robot. At this moment, the activity
bump of the integrator cells of the HD network is centered at 2.02, about 115.64
degrees in (B). The integrator cells of the grid cell network have peak activity
at (3.56, 5.68) in (D).

encodes the location of the robot in the physical environment,
and the width of the bump reflects the reliability of the belief.

Fig. 4B and D show the neural activities of the integrator cells
in the HD cell network and grid cell network when the robot
moved to a different location. As can be seen in Fig. 4B, the
activity bump of HD cells shifted its center to 2.02, indicating the
current HD of the robot in the physical environment is at 115.64
degrees with respect to the initial head direction. Similarly, in
Fig. 4D, the activity bump of grid cells changed its center to (3.56,
5.68). Due to the periodic boundary condition of the neural space,
this grid cell representation can then be unwrapped iteratively by
considering possible jumps at the boundaries of the neural space
to obtain an estimation of the robot’s location in the physical
environment.

6.1.2. Cognitive map
The cognitive map constructed by the NeuroBayesSLAM sys-

tem is depicted as a semi-metric topological map (Fig. 5B), gen-
erated by graph relaxation algorithm, taking into account the
physical distance between related vertices through the activity
bump of grid cells. The vertices of the topological graph are
depicted by green circles (as the circles are densely located, they
overlap and appear to be a thick green line). The fine blue line
comprises the edges connecting related vertices. Due to the local
metric information contained in the edges, the topological graph
captures the structure of the road network of the environment, as
can be seen by comparing with the ground truth map (Fig. 5A).
All loops, intersections, and corners are correctly preserved in
the graph. Due to the error in speed estimation, the path of the
cognitive map is slightly geometrically distorted as compared
with the ground truth map.

6.1.3. Cue conflict resolution
During navigation, the motion errors accumulate and lead to

conflict between the vestibular cues and the visual cues when
loop closure happens. Cue conflict resolution is key to the forma-
tion of robust spatial representations. Cue conflict here is solved

Fig. 5. The semi-metric topological map (B) constructed by the NeuroBayesSLAM
system for St Lucia suburb (A). The green thick line comprises topological graph
vertices, and the blue thin line consists of edges between related vertices in the
graph. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 3
Strong visual cues parameters.
Parameter HD cells Grid cells

E 100 1
1

σ2
inject

20 0.2

∆cali 0.01 0.01
∆inte 0.001 0.001

Table 4
Weak visual cues parameters.
Parameter HD cells Grid cells

E 100 1
1

σ2
inject

1.1 0.011

∆cali 0.01 0.01
∆inte 0.001 0.001

by plastic remapping of visual information onto HD cells and grid
cells. The activities of HD cell network and grid cell network are
calibrated by a consecutive sequence of familiar landmarks from
visual cues, over a period of several minutes. Thus, the visual
landmarks gain cue control. The plastic remapping process causes
a shift in preferred head directions and locations undershooting
those corresponding to visual landmarks, which are then inher-
ited by HD and grid cells during path integration (Knight et al.,
2012; Page et al., 2013).

In order to demonstrate clearly the importance of visual cues
in plastic remapping process, we varied the reliability parameter
of the visual cues (1/σ 2

inject ) in the simulation (Table 3 vs. Table 4).
At about 181 s, the robot was about to close a loop, located

in the south-east part of Fig. 5. During loop closure, conflict
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Fig. 6. An example of cue conflict resolution for HD cells. (A) shows the HD phase changing overtime; (B) shows reliability changing overtime. The read shadow
time window in (A) is shown in (C) and (D). The HD cell neural activities of four different time stamps of (C) and (D) are shown in (E), (F), (G), and (H). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. An example of cue conflict resolution for grid cells. The grid cell neural
activities of four different time stamps of Fig. 6 C and D are shown in (A), (B),
(C), and (D).

between the integrator cells and calibration cells occurred, as
shown by the difference between the phases encoded by the two
populations (highlighted by the red shadow area in Fig. 6A). With
strong visual cue (supplementary video S2), the integration of the
visual landmark information into the calibration cells increased
the reliability of calibration cells (Eq. (14)), as shown in Fig. 6B.
A close-up of the red shadow area shows the evolution of the
phases of the integrator cells and calibration cells. The final esti-
mation of the phase was closer to that of the integrator cells in
the beginning and was taken over by the phase of the calibration
cells in the end (Fig. 6C), due to the increasing reliability of
the calibration cells (Fig. 6D). During loop closure, the neural
activities of the integrator and calibration cells competed and the
activity of the calibration cells finally dominated (Fig. 6E–H). The
visual landmark therefore gained cue control.

The same remapping process can be observed in grid cells,
as shown in Fig. 7. In order to ease the description, the neural
activities of the integrator and calibration cells at the same time
step are summed to be presented in a single panel, given by
Fig. 7A–D, the time steps of which exactly correspond to those of
E–H in Fig. 6, respectively. In the beginning, the integrator cells,
whose activity bump was located in the right-bottom of Fig. 7A,
were dominant in the determination of activity bump center
of grid cells. As the calibration cell received consecutively the
energy injection from local view cells, the neural activity of the
calibration cell rapidly increased due to the attractor dynamics
(Fig. 7B and C). At last, the calibration cells completely overrode
the integrator cells (Fig. 7D), meaning a successful remapping of
visual cues onto grid cells happened.

However, weaker visual landmarks failed to gain the control
(Fig. 8, supplementary video S3). To distinctively show the dif-
ference, mush smaller reliability 1/σ 2

inject is used (Table 4). When
the phases of the calibration and integration cells were different
from each other during loop closure, the final estimated phase
was consistently coincided with that of integration cell (Fig. 8A).
Weak reliability of the visual cues was not able to inhibit the
vestibular cues. As a result, insufficient weight was assigned
for visual information in the integration, leading to unsuccessful
resolve of cue conflicts.

6.1.4. Firing rate maps
In order to see the neural response of a single cell, we divided

the ring attractor manifold of head direction equally into 36 units
and the torus attractor manifold of grid cells equally into 36 × 36
units.

The neural activities of single units (equivalent to a single cell)
are shown on top of the cognitive map in Fig. 9.

HD unit 1 fires strongly when the robot moves in directions
close to southwest (Fig. 9A), and shows degraded activity over
similar directions due to the width of the bump in the HD cell
model (Fig. 4). The unit does not fire on many roads that are
parallel to the southwest direction, since the robot moves on
those roads in the direction of northeast, i.e. opposite to the
preferred firing direction of the unit. This is confirmed by the
firing rate map of HD unit 19, whose preferred firing direction is
opposite to that of HD unit 1 (9B). This unit fires when the robot
travels towards northeast and its firing rate map does not overlap
with that of HD unit 1 shown in Fig. 9A, suggesting that it keeps
silent when the unit in Fig. 9A is active. On bending paths, as the
robot turns toward and away from the preferred head directions
of the units, their firing rates increase first and then decrease
(Fig. 9A–B), with changing speed being coincided with the angular
velocity of the robot. Globally, HD units only maintain consistent
preferred directions in local regions, due to the fact that the error
in path integration is correctly only in local loops.

Due to the torus structure of the grid cell model, a single
grid unit fires at multiple distinct locations in the environment.
Fig. 9C shows the firing rate map grid unit (1, 1). In general, the
activity of a grid unit gradually increases when the robot enters
the center of its firing fields, and decreases slowly as the robot
leaves its fields. The multiple firing fields of the grid unit do
not distribute in a triangular grid structure, as the large-scale
physical environment explored here is only traversed for a few
times. As a contrast, the maze used in the recording of grid cells
is explored by the animal extensively, a situation may facilitate
the emergence of globally consistent grid maps.

6.2. iRat Australia dataset

The iRat Australia dataset is obtained by iRat, a miniature
mobile robot with similar size and shape as a rat, via a web cam-
era in a maze mimicking Australian geography, including famous
Australian landmarks, such as the Sydney Opera House and Uluru.
The camera images, odometry messages, and overhead images are
all provided by the iRat ROSbag dataset. The parameters of the
NeuroBayesSLAM system are set the same as before, according to
Tables 1 and 2.

The mapping process is presented in supplementary video S4.
The interface of the NeuroBayesSLAM system running on this
dataset is shown in Fig. 10, with the display of overhead image
in panel B.

Since the behavior of the HD and grid cell models has been
already discussed in detail and the mechanism of cue conflict
resolution between visual cues and vestibular cues has been also
concretely elaborated, here, we only show the results of the
cognitive map and firing rate maps for iRat Australia dataset.

6.2.1. Cognitive map
Fig. 11 shows the cognitive map constructed by NeuroBayesS-

LAM system for the iRat Australia dataset. The path integration
process is subject to the accumulation error in integrating ve-
locity information. Visual inputs provide correction information
during loop closures, and as a result, the shape of the cognitive
map before and after loop closures is optimized (see video S4
in supplementary materials). As the iRat explores the whole
environment, the map gets more stable with minor tweaks. Com-
pared with the ground truth map, shown in Fig. 10B, the final
cognitive map topologically captures the structure of the explored
environment.
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Fig. 8. An example of cue conflict resolution for weaker visual landmarks. (A) shows the HD phase changing overtime; (B) shows reliability changing overtime.

Fig. 9. Firing rate maps of example units for St Lucia suburb dataset. Firing rate is color-coded from blue to red by the same jet colormap. The firing rate of a single
unit at different locations is plotted on top of the experience map. (A) The firing rate map of HD unit 1 corresponding to head direction 0 degree. (B) The firing rate
map of HD unit 19 corresponding to head direction 180 degree, whose preference is opposite to HD unit 1 in (A). (C) The firing rate map of grid unit (1, 1). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Screenshots of the NeuroBayesSLAM system for iRat Australia dataset. (A) The neural activity of HD cells; (B) Overhead image is shown by ROS image_viewer;
(C) Input visual scene (top); the local view template and the best matched template (bottom); (D) The neural activity of grid cells is rendered as heat map; (E)
Experience map.
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Fig. 11. Cognitive map for iRat Australia dataset. The green circles are the
vertices of the topological graph, and the blue thin line consists of edges
connecting related topological vertices. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

6.2.2. Firing rate maps
The same way that used to obtain the firing rate map of a

single unit for the St Lucia suburb dataset has been used here for
the iRat Australia dataset.

Fig. 12A and B give the firing rate maps of head direction unit 1
and unit 19. These two units have completely opposite preferred
directions. In the same local region, the two units express oppo-
site firing fields (Fig. 12A vs. B). Due to the fact that the iRat can
turn its head in any locations in the physical environment, not
like St Lucia suburb dataset, the firing fields of unit 1 and 19 do
not always maintain opposite to each other globally.

Fig. 12C shows that grid unit (1, 1) also fires at multiple
distinct locations in the physical environment, due to the periodic
boundary conditions of the grid cell model. While the iRat passes
the fields through different topological trajectories in the cogni-
tive map, the grid unit gets activated, meaning that consistent
firing fields of grid units are maintained locally. The global grid
structure is missing however, due to the fact that local view cells
anchor grids to local visual cues when the environment is only
covered by several passages.

7. Discussion

Inspired by single neuron recording presented in Knight et al.
(2012), we developed in this paper a novel Bayesian attractor
network model, called NeuroBayesSLAM, to replicate the multi-
sensory integration mechanism found in animal navigation. In-
tegrator cells and calibration cells are introduced to model HD

cells or grid cells in parahippocampal region. Movement infor-
mation and visual information, encoded by the integrator cells
and the calibration cells respectively, were integrated by Bayesian
inference. The performance of the proposed NeuroBayesSLAM
model was verified in both indoor and outdoor environments
of different scales. Coherent semi-metric topological maps were
successfully constructed for both environments, under the same
parameter setting. The NeuroBayesSLAM model reproduced simi-
lar responses of HD units and grid units in the two environments
as those of HD cells and grid cells observed in rodents.

The integrator cells and the calibration cells in the HD cell
model could correspond to the neurons in the VIP area and
the MSTd area of the head direction neural system, respectively.
We hypothesis that the corresponding brain areas for integrator
cells and calibration cells of the grid cell system may reside in
MEC, pre- and parasubiculum (Boccara et al., 2010). This hypoth-
esis is supported by connectomics results showing that there
is a segregation of afferent inputs to these regions. MEC re-
ceives strong egocentric movement information from regions
like postrhinal cortex, parietal cortex. Pre- and parasubiculum is
innervated mainly by retrosplenial cortex, which relays strong
inputs from visual cortex.

To concisely describe the neural population activity of HD
cells and grid cells, Gaussian profiles are applied to represent the
activity packet of the cells. This simple representation preserves
the single bump activity of the attractor network without the
need to resort to the structured recurrent connections (Pastoll,
Solanka, van Rossum, & Nolan, 2013; Tsodyks & Sejnowski, 1995).
Robust estimation of head directions and locations of the robot is
obtained by competitive dynamics between integrator cells and
calibration cells.

Our study contributes to both neuroscience and robotic fields.
In the field of neuroscience, the proposed Bayesian attractor
network provides a descriptive model on conflict resolution be-
tween visual cues and vestibular cues. Successful localization
and mapping in outdoor and indoor environments demonstrate
that Bayesian integration might be a general rule in combining
information from different sensory modalities with different reli-
abilities. In the proposed Bayesian attractor network, cue conflicts
are resolved by plastic remapping of visual cues from calibration
cells, which leads to a shift in preferred head directions of HD
cells (Fig. 6E to H) and preferred positions of grid cells (Fig. 7A
to D). The remapping depends on the reliability of visual cues.
Strong and continuous visual cues gain cues control more easily
(HD cells in Fig. 6 and grid cells in 7), in which visual cues inject
higher energy into HD cells and grid cells by calibration cells
(Table 3). However, weak and incontinuous visual landmarks lose
cue control with parameters in Table 4 (Fig. 8).

In the field of robotics, we proposed an efficient method
with biological plausibility to solve the SLAM problem. The pro-
posed Bayesian attractor network has a simple structure, without

Fig. 12. Firing rate maps of example units for iRat Australia dataset. (A) The firing rate map of the HD unit 1. (B) The firing rate map of the HD unit 19, whose
preference is opposite to the HD unit 1 in (A). (C) The firing rate map of grid unit (1, 1).
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the need of simulating recurrent connections between neurons.
This concise yet effective and biologically plausible method is
computationally much more efficient than models based on re-
current networks (Milford & Wyeth, 2008; Zeng & Si, 2017), and
is attractive for robot applications of long term autonomy in
energy critical situations. Besides, fewer parameters are required
in the model, compared with previous continuous attractor net-
work (Milford & Wyeth, 2008; Si et al., 2014), alleviating the
troublesome parameter tuning process for different scenarios.
Thus, it is easier to apply the model in realistic robotic navigation
tasks.

In our model, grid units and HD units form locally consistent
firing fields, without coherent field structure globally (Figs. 9 and
12). The main reason is that local view cells anchor grid units and
HD units to local cues (Derdikman et al., 2009), breaking the reg-
ular grid patterns for grid units, and the consistent preferred head
direction firing patterns for HD units. One possible mechanism to
obtain a global grid structure for grid cells is repeated exploration
in the same environment (Carpenter, Manson, Jeffery, Burgess,
& Barry, 2015). In the initial exploration of the environment,
grid patterns only express in local regions. After rats repeatedly
exploring the environment, globally coherent representations of
physical environment are acquired and the grid firing maps be-
come globally consistent. The globally consistent representation
may provide a universal spatial metric in all environments (Moser
et al., 2014). However, recent discoveries show that grid patterns
are very often fragmented and distorted, due to the diversity of
local features in the environment (Krupic, Bauza, Burton, Barry,
& O’Keefe, 2015; Stensola, Stensola, Moser, & Moser, 2015). We
would further extend our model to investigate the formation of
global patterns of both HD units and grid units.

The core component of our NeuroBayesSLAM system, i.e.,
Bayesian attractor network, is essentially different from the pose
cell network previously proposed in Ball et al. (2013), although
some components related to vision and experience map are
reused in our system. First, the Bayesian attractor network in
this paper maintains a continuous representation of space by
parametric probabilistic distributions. The same network can be
used for exploring different environments of various scales under
the same parameter setting. The pose cell network in Ball et al.
(2013) would require the number of cells in the network to scale
linearly with the size of the environment, or set the number of
cells to accommodate the largest possible environment. Second,
the Bayesian attractor network in this paper is endowed with
competitive dynamics between integrator cells and calibration
cells, and integrates multisensory information to resolve cue con-
flicts. The dynamics of the pose cell network in Ball et al. (2013)
is implemented by the balance of local excitation and global
inhibition. Third, the computational complexity of the proposed
Bayesian attractor network is low, due to its concise probabilistic
representations, requiring less computation time and resources as
compared to attractor networks based on recurrent connections.
More specifically, the head directions and positions of the agent
are represented by twelve variables, i.e. four (angular phase
and its reliability of integrator cells and calibration cells) for
the head direction network and eight for the representation of
two dimensional positions in grid cell network. At each time
step, the time and space complexity of the proposed method
are both constant O(1). Compared with the pose cell network
in RatSLAM, it encodes the conjunction of head direction and
position of the agent using a three-dimensional matrix of size
NX ×NY ×NTHETA, and requires to update every pose cell for each
time step (Milford et al., 2004). The time and space complexity of
the pose cell network are both O(NXNYNTHETA). In the meantime,
fewer number of parameters is needed, leading to increased
applicability and usability in applying to new environments.

Finally, the proposed model encodes head directions and posi-
tions separately, consistent with the fact that HD cells and grid
cells form complementary neural circuits. The proposed model
reproduces similar effects of cue conflict resolve as observed
in neurobiological experiments (Knight et al., 2012; Page et al.,
2013).

There are also several limitations in this study. First, place
cells, which are found to play an important role in spatial cog-
nition, are absent in our network. Second, our network is an
abstract representation of the HD cells and grid cells system,
neglecting detailed connection structures within neural popula-
tions. Third, for simplicity, the same energy intensity is injected
to Bayesian attractor network when visual cues calibrate spatial
representations, without considering the degree to which visual
cues and local view templates are matched.

Future work may extend the current model along, but not
limited to, four lines. First, a population of place cells could
be included into our system. Place cells combine information
from multiple modules of grid cell networks with diverse spac-
ings and orientations (Solstad, Moser, & Einevoll, 2006). The re-
sulting model could be used to investigate the computational
mechanisms of sparse spatial representations in the entorhinal–
hippocampal circuit. Second, stereo visual information could be
considered for integration, in order to obtain more accurate rep-
resentations of the environment. Third, mechanisms for self-
adaptation of the parameters could be studied, so as to break
the curse of manual parameter tuning to a large extent in the
SLAM system. Fourth, systematic comparison of the proposed
model with other models in large environments would give an
evaluation of the performance for further development of the
model (Li et al., 2019).

8. Conclusion

In summary, we developed a concise yet biologically plausible
model, NeuroBayesSLAM, based on spatial cognitive mechanisms
of mammalian brains to solve the SLAM problem. The proposed
model successfully built coherent cognitive maps both in large
scale outdoor and in small indoor environments. By modeling the
dynamics of multisensory information integration, the network
is able to resolve cue conflicts. The units in the model express
firing fields in the environment similar to those recorded in neu-
robiological experiments. Different from the black-box modeling
principle of classical deep convolutional neural networks, the
proposed model is interpretable, since the network activity is
selective to spatial quantities in physical environments. In addi-
tion, the multisensory integration method proposed in the model
may constitute a general computational principle of other neural
subsystems, other than the head direction system. As an attempt
to reach better understanding of how mammalian brains work
for navigation, the proposed model sheds light on developing
more practical and reliable systems for robot navigation. Our
work also indicates that brain-inspired algorithm is an intriguing
direction towards the development of autonomous robot systems
with high efficiency.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.neunet.2020.02.023.
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