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Abstract

The golden ratio, ϕ = 1.61803. . ., has often been found in connection with biological phe-

nomena, ranging from spirals in sunflowers to gene frequency. One example where the

golden ratio often arises is in self-replication, having its mathematical origins in Fibonacci’s

sequence for “rabbit reproduction”. Recently, it has been claimed that ϕ determines the ratio

between the number of different nucleobases in human genome. Such empirical examples

continue to give credence to the idea that the golden ratio is a universal constant, not only in

mathematics but also for biology. In this paper, we employ a general framework for chemi-

cally realistic self-replicating reaction systems and investigate whether the ratio of chemical

species population follows “universal constants”. We find that many self-replicating systems

can be characterised by an algebraic number, which, in some cases, is the golden ratio.

However, many other algebraic numbers arise from these systems, and some of them—

such as
ffiffiffi
2

3
p
¼ 1:25992 . . . and 1.22074. . . which is also known as the 3rd lower golden ratio—

arise more frequently in self-replicating systems than the golden ratio. The “universal con-

stants” in these systems arise as roots of a limited number of distinct characteristic equa-

tions. In addition, these “universal constants” are transient behaviours of self-replicating

systems, corresponding to the scenario that the resource inside the system is infinite, which

is not always the case in practice. Therefore, we argue that the golden ratio should not be

considered as a special universal constant in self-replicating systems, and that the ratios

between different chemical species only go to certain numbers under some idealised

scenarios.

Introduction

The golden ratio ð1þ
ffiffiffi
5
p
Þ=2 ¼ 1:61803 . . ., usually denoted by the Greek letter ϕ (PHI), has

attracted broad attention for a long time, with suggestions that they are aesthetically significant

and ubiquitous in nature. These claims were made particularly prominent in Dan Brown’s

book (and later film) The Da Vinci Code: (quote) Despite PHI’s seemingly mystical mathematical
origins, Langdon explained, the truly mind-boggling aspect of PHI was its role as a fundamental
building block in nature. Plants, animals, and even human beings all possessed dimensional
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properties that adhered with eerie exactitude to the ratio of PHI to 1. . . “PHI’s ubiquity in
nature,” Langdon said, killing the lights, “clearly exceeds coincidence, and so the ancients assumed
the number PHI must have been preordained by the Creator of the universe. . .” [1]

The basis of Dan Brown’s fictional discussion of the golden ratio ϕ originated from “scien-

tific” studies (as documented by paper [2] and [3]). For example, the Great Pyramid of Khufu

was claimed to be designed by ancient Egyptians to manifest ϕ, i.e., the ratio of the slant height

to half of the length of the base was designed to be ϕ. Moreover, nautilus shell was believed to

be a logarithmic spiral whose growth factor is ϕ. Other examples include the design of the Par-

thenon, Leonardo da Vinci’s paintings, the ratios in a human body, lengths of passages in the

Aeneid.

These claims are, however, mostly false or misleading [2–4]. For example, although today

the ratio of the slant height to half of the length of the base of the Great Pyramid happened

to be ϕ approximately, the height was quite different when it was built over four thousand

years ago, and there is no evidence that ancient Egyptians even knew the golden ratio [2]. A

field study by Falbo showed that nautilus shell is quite far from a golden spiral [3]. For the

Parthenon, there are many different numbers of its dimensions in the literature (probably

because measurements are made between different points by different people), allowing a

golden ratio enthusiast to choose whatever numbers to fit ϕ [2]. But sadly, despite the dubi-

ous nature of the claims, the golden ratio even remains a feature of some school textbooks,

such as [5].

One area of biology in which the golden ratio has a genuine role is in phyllotaxis, i.e., the

arrangement of leaves on the stem of a plant. The seeds in the head of a ripe sunflower fit

neatly together into two interlocking families of helical spirals. The number of clockwise and

anti-clockwise winding spirals are often both successive numbers of the Fibonacci sequence

[6]. For example, a sunflower might have 34 clockwise spirals and 21 anti-clockwise spirals,

where 34 and 21 are two successive numbers in the Fibonacci sequence, i.e., 1, 1, 2, 3, 5, 8, 13,

21, 34, 55, 89, 144, . . ., which satisfies

Xt ¼ Xt� 1 þ Xt� 2 ð1Þ

The limit of the ratio between two successive Fibonacci numbers is the golden ratio,

namely, limt!1 Xt/Xt−1 = ϕ. These sequences are genuine biological phenomenon, not

just in sunflowers, but in plants such as pinecones, aloe, pineapples, and cacti [6–8]. It

should be stressed however that non-Fibonacci phyllotaxy is also abundant [7, 9]. Several

theories have been proposed to explain the biochemical and mechanical mechanisms for

these patterns (reviewed by paper [10]), including Alan Turing’s morphogenesis theory [11,

12].

The Fibonacci process Eq (1) corresponds to self-replicating processes, having its origin in

the growth pattern of the “Fibonacci rabbit”, an idealised scenario first considered by the Ital-

ian mathematician Fibonacci in his book Liber Abaci (1202). The idea is as follows: rabbits

never die; it takes one month for a pair of infant rabbits to become a pair of adults; an adult

pair always gives birth to an infant pair; the system starts with one pair of adult rabbits. This

gives rise to Eq (1), where Xt is the number of adult pairs at month t, and the number of infant

pairs at month t is Xt−1. So the ratio of the number of adult pairs over the number of infant

pairs goes to ϕ as t!1.

Recently, the golden ratio was suggested to appear in another totally different field: the

human genome. Dress et al. proposed that the growth pattern of repetitive DNAs is analogous

to the pattern described by the Fibonacci process Eq (1) (repetitive DNAs are those built from
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a basic short DNA sequence that is repeated many times, often referred to as “junk DNA” and

accounted for a large fraction of the whole human genome) [13]. Yamagishi and Shimabukuro

argued that the distribution of the values of PA + PC for the 24 human chromosomes can also

be explained by the Fibonacci process Eq (1) where PA is the frequency of codon A and like-

wise, PC is the frequency of codon C [14]. Moreover, Perez calculated that in the single-

stranded whole human DNA, (PC + PG)/(PA + PT) is approximately (3 − ϕ)/2 [15]. These

empirical examples continue to give credence to the idea that ϕ is a universal constant, not

only in mathematics but also for biology.

Another famous model that can generate ϕ is the L-system (a type of formal grammar) [16].

The specific L-system that generates ϕ has the following rules: for each generation, each Q

becomes a Q and an S, while each S becomes a Q. The system is initialised with a string com-

posed of only one Q. So at the first generation, the string becomes QS; at the second genera-

tion, the string becomes QSQ; then QSQQS, QSQQSQSQ, . . . The number of Q at each

generation forms the Fibonacci sequence (as well as the number of S but with one generation

lag). So the ratio of the number of Q over the number of S goes to ϕ. This specific L-system can

actually be written as the following “reaction system”,

Q! Qþ S

S! Q

(

ð2Þ

This process is equivalent to the Fibonacci rabbit model. Note that Eq (2) also involves self-

replication, because the two reactions add up to Q!Q + Q (by cancelling S on both sides)

and Q is thus self-replicating. Similarly, the genealogical tree model [17, 18] which can also

generate ϕ has the same argument.

These models do, from a mathematical viewpoint, give rise to the golden ratio, but our

question is whether the golden ratio has a special role in natural self-replicating systems in gen-

eral, as implied by the authors in papers [13–15]. Should we expect, in a wide range of different

self-replicating systems, to find that the ratio of different components in the system is the

golden ratio? And if not, are there other important mathematical constants that we should

expect to see in connection to self-replicating systems?

To answer these questions we employ a framework of chemically realistic self-replicating

reaction systems, introduced by us in paper [19]. This theory has practical significance to

real chemistry and biology, and instantiations of this framework can capture a wide range

of different natural chemical systems such as the citric acid cycle and the formose reaction.

In this theory, a self-replicating system consists of a few chemical reactions, and self-replica-

tion is a system-level property: each reaction in the system is not able to self-replicate but

the system self-replicates as a whole. If the golden ratio ϕ does have a special role in natural

self-replicating systems in general, we would expect to see ϕ appears quite a lot in these

systems.

This paper is organised as follows. Section Materials and methods reintroduces the

framework in paper [19] for chemically realistic self-replicating reaction systems. The first

part of Section Results elaborates on the scheme for population dynamics that we apply on

self-replicating systems, and describe two self-replicating systems that are characterised by

ϕ. In the second part of Section Results, we show that all of the analysable self-replicating

systems up to a certain size are characterised by a limited number of distinct characteristic

equations and numbers. In the third part of Section Results, we introduce the population

dynamics for chemical reaction systems under the law of mass action, and find that the

characteristic number of a self-replicating system is a transient behaviour corresponding

Goden ratio and self-replication

PLOS ONE | https://doi.org/10.1371/journal.pone.0200601 July 16, 2018 3 / 18

https://doi.org/10.1371/journal.pone.0200601


to the scenario that the resource inside the system is infinite, which is not always the case in

practice.

Materials and methods

Chemically realistic self-replicating reaction systems

In an earlier paper [19], we described a general framework to construct chemically realistic

reaction systems. In this framework, a molecule is defined by its integer “mass”, i, and thus

denoted i; all reactions that conserve mass—the total mass on the reactant side adds up to

those on the product side—are possible; only two types of reaction are allowed, synthesis of

two molecules to create a molecule of greater mass (e.g., 2 þ 4 ! 6) and decomposition into

two molecules to create two molecules of lower mass (e.g., 6 ! 1 þ 5); every reaction is chem-

ically spontaneous. The last requirement constrains the details of the thermodynamic free

energy of each molecule and reaction, which we do not need to consider in this paper, but it

does have two consequences related to this paper. The first one is that a reaction and its reverse

reaction, e.g., 2 þ 4 ! 6 and 6 ! 2 þ 4, cannot both appear in one system. The second con-

sequence will be introduced in the next paragraph.

By choosing some reactions that satisfy the requirements above, we can construct a chemi-

cally realistic reaction system, namely, an instantiation of the general framework. The follow-

ing system is one of such instantiations,

2 ! 1 þ 1

3 ! 1 þ 2

1 þ 4 ! 5

5 ! 2 þ 3

8
>>>>>>>>><

>>>>>>>>>:

ð3Þ

We define the resource molecule to be the molecule that only appears on the reactant side

(4 in this case). For any chemically realistic self-replicating system, there is at least one type of

resource molecule. This is the second consequence of the “chemical spontaneity” requirement

above. We define an intermediate molecule to be any molecule that appears on both the reac-

tant side and the product side (1, 2, 3 and 5 in this case), and the waste molecule to be the mol-

ecule that only appears on the product side (there is no in this case).

In paper [19], we show that a chemically realistic reaction system is self-replicating if the

following three criteria are satisfied:

1. For every reaction, at least one type of its reactants comes from the products of other

reactions;

2. There is at least one intermediate molecule that appears on the reactant side fewer times

than that on the product side;

3. There are no intermediate molecules that appear on the reactant side more often than on

the product side.

In this paper we introduce an alternative, narrower criterion under which certain chemi-

cally realistic self-replicating systems are analysable. We say that a self-replicating system is

analysable if it satisfies criterion 1, 2, and the following criterion 3�:

Goden ratio and self-replication
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3�. On the reactant side of the whole system, each intermediate molecule species appears at

most once.

Note that system Eq (3) satisfies all of criterion 1, 2 and 3�, and thus is an analysable self-

replicating chemical reaction system.

Results

Systems characterised by the golden ratio ϕ
We now introduce a scheme for population dynamics for analysable self-replicating chemical

reaction systems, using system Eq (3) as an example. Let Ni(t) be the population of molecule

species i at generation t. We initialise the system with N1(0) = N2(0) = N3(0) = N5(0) = 1, i.e.,

one of each intermediate molecules. In addition, we assume that there is an infinite number of

resource molecules 4 inside the system, namely N4(t) =1 for all t.
We update molecule populations at generation t + 1 from t as follows: for each molecule

species i, find the unique reaction that has i on the reactant side; and all of molecules i at gen-

eration t—namely Ni(t) of i—are transformed into the products of this corresponding reac-

tion. The criterion 3� above guarantees that there is only one unique reaction that has

molecule i on the reactant side.

Consider how we apply this updating procedure to system Eq (3):

• Firstly, update Ni(0) to obtain Ni(1). For molecule 1, due to the fact that the third reaction is

the only reaction that has molecule 1 on the reactant side and N1(0) = 1, we let this one of 1

transform into one of 5 through the third reaction. For molecule 2, due to the fact that the

first reaction is the only reaction that has molecule 2 on the reactant side and N2(0) = 1, we

let this one of 2 transform into two of 1 through the first reaction. For molecule 3, because

the second reaction is the unique reaction and N3(0) = 1, we let this one of 3 transform into

one of 1 and one of 2. For molecule 5, because the fourth reaction is the unique reaction and

N5(0) = 1, we let this one of 5 transform into one of 2 and one of 3. Therefore, at generation

t = 1, we have N1(1) = 3, N2(1) = 2, N3(1) = 1 and N5(1) = 1.

• Then, update Ni(1) to obtain Ni(2). N1(1) = 3 of molecule 1 are transformed into three of

5 through the third reaction; N2(1) = 2 of 2 are transformed into four of 1 through the

first reaction; N3(1) = 1 of 3 is transformed into one 1 and one 2 through the second

reaction; and N5(1) = 1 of 5 is transformed into one 2 and one 3 through the fourth

reaction. Therefore, at generation t = 2, we have N1(2) = 5, N2(2) = 2, N3(2) = 1 and

N5(2) = 3.

• Similarly, at generation t = 3, we have N1(3) = 5, N2(3) = 4, N3(3) = 3 and N5(3) = 5.

• Continue this updating procedure. Finally we obtain a sequence of N1(t), N2(t), N3(t) and

N5(t).

Table 1 shows the result over six generations. Note that this scheme can be applied to any

analysable self-replicating system, through the following steps in general: (1) assume an infi-

nite number of resource molecules inside the system; (2) initialise the system with one of

each intermediate molecule; and (3) update molecule populations by generations to obtain

sequences of molecule populations. This scheme defines a particular population dynamics for

self-replicating systems.

Goden ratio and self-replication
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Note that Ni(t + 1) only depends on Ni(t), so we can derive a recurrence relation (written as

a matrix form):

N1ðt þ 1Þ

N2ðt þ 1Þ

N3ðt þ 1Þ

N5ðt þ 1Þ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼

0 2 1 0

0 0 1 1

0 0 0 1

1 0 0 0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

N1ðtÞ

N2ðtÞ

N3ðtÞ

N5ðtÞ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð4Þ

We call this m × m matrix as the recurrence matrix, denoted as A, where m is the number of

intermediate molecules. Denote the vector of molecule populations (N1(t), N2(t), N3(t), N5(t))⊺

as N(t), then Eq (4) becomes

Nðt þ 1Þ ¼ ANðtÞ ð5Þ

Therefore, we can also use A to calculate the population sequences:

NðtÞ ¼ At Nð0Þ ð6Þ

Eqs (5) and (6) also represent this particular population dynamics in general.

Through either of the steps above, we obtain the sequences Ni(t). We further find that the

normalised population of each molecule species saturates, as shown in Fig 1, and that

lim
t!1

N1ðtÞ
N2ðtÞ

¼ 1:61803 . . . ¼ � ð7Þ

i.e., the ratio of populations of molecule 1 over that of 2 goes to the golden ratio as t!1.

We now rigorously prove Eq (7). Based on Eq (4), we have N5(t + 1) = N1(t), so N3(t + 1) =

N5(t) = N1(t − 1), and then we have N2(t + 1) = N3(t) + N5(t) = N1(t − 2) + N1(t − 1). Finally,

N1ðt þ 1Þ ¼ 2N2ðtÞ þ N3ðtÞ ¼ 2ðN1ðt � 3Þ þ N1ðt � 2ÞÞ þ N1ðt � 2Þ

¼ 3N1ðt � 2Þ þ 2N1ðt � 3Þ

, N1ðtÞ ¼ 3N1ðt � 3Þ þ 2N1ðt � 4Þ

Based on standard skills for solving recursive sequences [20], the characteristic equation of

the sequence N1(t) is

l
4
� 3l � 2 ¼ ðl

2
� l � 1Þðl

2
þ lþ 2Þ ¼ 0 ð8Þ

Table 1. Molecule populations Ni(t) for the self-replicating chemical reaction system Eq (3) at generation t.

Generation t N1(t) N2(t) N3(t) N5(t)
0 1 1 1 1

1 3 2 1 1

2 5 2 1 3

3 5 4 3 5

4 11 8 5 5

5 21 10 5 11

6 25 16 11 21

..

. ..
.

https://doi.org/10.1371/journal.pone.0200601.t001
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and its four roots are

l1 ¼ ð1þ
ffiffiffi
5
p
Þ=2 ¼ �

l2 ¼ ð1 �
ffiffiffi
5
p
Þ=2

l3 ¼ ð� 1þ
ffiffiffi
7
p

jÞ=2 �
ffiffiffi
2
p

e1:93j

l4 ¼ ð� 1 �
ffiffiffi
7
p

jÞ=2 �
ffiffiffi
2
p

e� 1:93j

8
>>>>>>>>><

>>>>>>>>>:

ð9Þ

where j is the unit imaginary number. Therefore, the closed form of this sequence is

N1ðtÞ ¼ al
t
1
þ bl

t
2
þ dl

t
3
þ Zl

t
4

where α, β, δ and η are constants determined by the initial

value N1(0) [20]. Note that the absolute value of λ1 is the largest among all roots, resulting in

Fig 1. Normalised molecule population ni(t) = Ni(t)/∑l Nl(t) for 60 generations for the chemically realistic self-replicating reaction system Eq (3).

Specifically, limt!1 n1(t) = 0.38196. . ., limt!1 n2(t) = limt!1 n5(t) = 0.23606. . . and limt!1 n3(t) = 0.14589. . .

https://doi.org/10.1371/journal.pone.0200601.g001
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lim t!1l
t
2
=l

t
1
¼ 0, and the same argument for λ3 and λ4. Therefore, we have

lim
t!1

n1ðtÞ
n2ðtÞ

¼ lim
t!1

N1ðtÞ
N2ðtÞ

¼ lim
t!1

N1ðtÞ
N1ðt � 3Þ þ N1ðt � 2Þ

¼ lim
t!1

al
t
1
þ bl

t
2
þ dl

t
3
þ Zl

t
4

al
t� 3

1
þ bl

t� 3

2
þ dl

t� 3

3
þ Zl

t� 3

4
þ al

t� 2

1
þ bl

t� 2

2
þ dl

t� 2

3
þ Zl

t� 2

4

¼ lim
t!1

1þ
blt

2

alt
1

þ
dlt

3

alt
1

þ
Zlt

4

alt
1

1

l3
1

þ
blt� 3

2

alt
1

þ
dlt� 3

3

alt
1

þ
Zlt� 3

4

alt
1

þ 1

l2
1

þ
blt� 2

2

alt
1

þ
dlt� 2

3

alt
1

þ
Zlt� 2

4

alt
1

¼
1

l
� 3

1
þ l

� 2

1

¼
1þ

ffiffiffi
5
p

2
¼ �

Note that Eq (8) is also the characteristic equation of the matrix A in Eq (4), and the four

roots in Eq (9) are thus the eigenvalues of A. Therefore, the recurrence matrix A gives all the

information of the sequence. Note that the largest absolute value among A’s eigenvalues corre-

sponds to ϕ. We call this largest eigenvalue the characteristic number, denoted Λ, of the self-

replicating system.

Now we show another example of a chemically realistic self-replicating reaction system that

is characterised by ϕ,

3 ! 1 þ 2

4 ! 1 þ 3

1 þ 6 ! 7

2 þ 5 ! 7

7 ! 3 þ 4

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð10Þ

where the resource molecules are 5 and 6. It has the recurrence relation

N1ðt þ 1Þ

N2ðt þ 1Þ

N3ðt þ 1Þ

N4ðt þ 1Þ

N7ðt þ 1Þ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼

0 0 1 1 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 1

1 1 0 0 0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

N1ðtÞ

N2ðtÞ

N3ðtÞ

N4ðtÞ

N7ðtÞ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

The characteristic equation of the recurrence matrix is

lðl
4
� 3l � 2Þ ¼ lðl

2
� l � 1Þðl

2
þ lþ 2Þ ¼ 0

This equation has five roots, where four of them are the same as in Eq (9) and another one

is 0. Therefore, the characteristic number Λ for this system is also ϕ. The golden ratio ϕ occurs

when the characteristic equation has the factor (λ2 − λ − 1). We have now seen that this occurs

for at least two analysable self-replicating systems.

Let us now consider the L-system (equivalently, the Fibonacci rabbit model) given in Eq

(2). This system satisfies criterion 1, 2 and 3�, and therefore we can employ the scheme for

population dynamics defined at the start of this section, namely Eq (5). Specifically, we obtain

Goden ratio and self-replication
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the recurrence relation:

NQðt þ 1Þ

NSðt þ 1Þ

 !

¼
1 1

1 0

 !
NQðtÞ

NSðtÞ

 !

The characteristic equation for this recurrence matrix is λ2 − λ − 1 = 0. So the characteristic

number Λ for this system is ϕ, thus recovering the golden ratio usually associated with the L-

system and the Fibonacci rabbit model.

There is however a serious problem with the biological interpretation of system Eq (2): it is

not a chemically realistic reaction system. Because Eq (2) does not fulfil the requirements men-

tioned at the start of this section to be chemically realistic, e.g., mass cannot be conserved in

the reaction Q!Q + S, as S is produced out of nothing. The intermediate steps for producing

S and Q are not fully described.

We can, nonetheless, construct a chemically realistic self-replicating system which is analo-

gous to Eq (2). The following system is one (non-unique) example:

1 þ 4 ! 5

11 ! 1 þ 10

10 ! 3 þ 7

5 þ 6 ! 11

3 ! 1 þ 2

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð11Þ

After omitting to write the resource (4 and 6) and the waste (2 and 7), the first four reac-

tions add up to 1 ! 1 þ 3 (by cancelling 5, 10 and 11 on both sides), and the last reaction

becomes 3 ! 1. These two reactions are identical to Eq (2) as 1 corresponds to Q and 3 corre-

sponds to S. However, the characteristic number Λ for system Eq (11) is 1.19385. . ., which is

not ϕ. Thus we cannot reliably use the L-system to explain why the golden ratio appears in

some biological systems.

Distribution of the characteristic number Λ
We now investigate a larger range of chemically realistic self-replicating reaction systems in

order to determine which numbers typically characterise their behaviour. We consider all of

the analysable self-replicating systems up to where the possibly largest molecule is 7. We

exhaustively checked every possible reaction system up to 7 to see whether it satisfies criterion

1, 2 and 3� in Section Materials and methods. Then we found 162 analysable self-replicating

systems in total (currently we cannot go beyond 7 because the number of possible reaction sys-

tems increases so fast that the computation time becomes too long). The distribution of the

characteristic numbers Λ for all of them is shown in Fig 2.
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The most frequent characteristic number is L ¼ 1:25992 . . . ¼
ffiffiffi
2

3
p

, which appeared 28

times. The following system Eq (12) is one such example,

1 þ 2 ! 3

1 þ 3 ! 4

4 ! 2 þ 2

8
>>>>><

>>>>>:

ð12Þ

where molecule 1 is the resource. We have the recurrence relation

N2ðt þ 1Þ

N3ðt þ 1Þ

N4ðt þ 1Þ

0

B
B
B
@

1

C
C
C
A
¼

0 0 2

1 0 0

0 1 0

0

B
B
B
@

1

C
C
C
A

N2ðtÞ

N3ðtÞ

N4ðtÞ

0

B
B
B
@

1

C
C
C
A

ð13Þ

where the 3 × 3 matrix is the recurrence matrix A. Table 2 shows Ni(t) for several generations.

Fig 2. Distribution of the characteristic numbers Λ for all the analysable self-replicating chemical reaction systems up to where the possibly

largest molecule is 7. The blue lines correspond to all integer self-replicating systems, while the red bars correspond to all other systems.

https://doi.org/10.1371/journal.pone.0200601.g002

Table 2. Molecule populations Ni(t) for the self-replicating chemical reaction system Eq (12) at generation t.

Generation t N2(t) N3(t) N4(t)
0 1 1 1

1 2 1 1

2 2 2 1

3 2 2 2

4 4 2 2

5 4 4 2

6 4 4 4

..

. ..
.

https://doi.org/10.1371/journal.pone.0200601.t002
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We find that the population of any molecule species doubles every three generations, i.e.,

Niðt þ 3Þ ¼ 2NiðtÞ holds for any t; and i ¼ 2; 3; 4:

Equivalently, N(t + 3) = 2N(t) holds for any t, where N(t) = (N2(t), N3(t), N4(t))⊺. We call

this type of system as the integer self-replicating system, namely, those satisfying that

Nðt þ pÞ ¼ Ap NðtÞ ¼ RNðtÞ holds for any t;

where N(t) is the m × 1 vector for populations of intermediate molecules at generation t, the

period p is a positive integer, and the growth rate R is a positive integer. We further find that all

of the eigenvalues of A in Eq (13) have the same absolute value and this value is
ffiffiffi
Rp
p

(
ffiffiffi
2

3
p

in this

case), which also means that the characteristic number L ¼
ffiffiffi
Rp
p

. It is a special property com-

pared with other systems such as Eqs (3) and (10) where the absolute values of the eigenvalues

of their corresponding recurrence matrix are not all equal.

System Eq (12) is just one specific integer self-replicating system. The blue lines in Fig 2

represent all integer self-replicating systems, which are quite common. Their characteristic

numbers, from small to large, are 1;
ffiffiffi
2

4
p

;
ffiffiffi
2

3
p

;
ffiffiffi
34
p

;
ffiffiffi
4

4
p

;
ffiffiffi
33
p

, and
ffiffiffi
4

3
p

, respectively.

The second most frequent characteristic number in Fig 2 is Λ = 1.22074. . . This is known

as the 3rd lower golden ratio, because of the fact that Λ3 = 1 + 1/Λ. In general, the number x
that satisfies xk = 1 + 1/x where k is an integer is proposed to be the kth lower golden ratio [21].

The following system is one example system characterised by the 3rd lower golden ratio.

3 ! 1 þ 2

4 ! 1 þ 3

1 þ 5 ! 6

6 ! 2 þ 4

8
>>>>>>><

>>>>>>>:

where molecule 5 is the resource. It has the recurrence relation

N1ðt þ 1Þ

N3ðt þ 1Þ

N4ðt þ 1Þ

N6ðt þ 1Þ

0

B
B
B
B
@

1

C
C
C
C
A
¼

0 1 1 0

0 0 1 0

0 0 0 1

1 0 0 0

0

B
B
B
B
@

1

C
C
C
C
A

N1ðtÞ

N3ðtÞ

N4ðtÞ

N6ðtÞ

0

B
B
B
B
@

1

C
C
C
C
A

The eigenvalues of the recurrence matrix are 1.22074. . ., −0.24812. . . ± j1.03398. . ., and

−0.72449. . ., respectively.

Note that the 1st lower golden ratio (namely, ϕ) appears three times; the 2nd lower golden

ratio 1.32471. . . (also called the plastic number) appears four times; and the 4th lower golden

ratio 1.16730. . . appears once (Fig 2).

In order to explain why certain characteristic numbers arise, we note that the m × m recurr-

rence matrix A = (ajk) for any analysable self-replicating chemical reaction system must satisfy

the following conditions:

1. It is a non-negative integer square matrix. This is because any reaction involves only integer

number of molecules.

Goden ratio and self-replication

PLOS ONE | https://doi.org/10.1371/journal.pone.0200601 July 16, 2018 11 / 18

https://doi.org/10.1371/journal.pone.0200601


2. All entries on the main diagonal are 0, namely ajj = 0. This is because no molecule can

appear on both sides of a reaction (e.g., 2 þ 3 ! 2 is not allowed, since the mass has to be

conserved).

3. ajk and akj cannot be both larger than 0, that is, ajk � akj = 0. This is because a reaction and

its reverse reaction cannot both appear in one system.

4. The sum of any column is either 0, 1 or 2. This is because of criterion 3� in Section Materials
and methods and also because each reaction produces no more than two molecules.

5. The sum of at least one column is 2. This is because of criterion 2 in Section Materials and
methods.

6. The sum of any row is at least 1. This is because of criterion 1 in Section Materials and
methods.

Therefore, the characteristic equation of A has the general form (referring to S1 Appendix

for the derivation):

l
m
� s3l

m� 3
þ s4l

m� 4
� � � � þ ð� 1Þ

m� 1
sm� 1lþ ð� 1Þ

m
sm ¼ 0

where σ3, σ4, � � �, σm are all integers. Note that (1) this polynomial is always monic, i.e., the lead-

ing coefficient is 1; (2) the term λm−1 is zero because of condition 2 of A mentioned above; (3)

the term λm−2 is zero because of condition 3 of A mentioned above.

For all of the chemically realistic self-replicating systems we investigated (where the largest

molecule is 7), there are at most six types of intermediate molecules (since at least one mole-

cule species must be the resource). Therefore, we only have four cases: For any 3-intermediate-

molecule system, the characteristic equation is

l
3
� det ðAÞ ¼ 0 ð14Þ

For any 4-intermediate-molecule system, the characteristic equation is

l
4
� s3lþ det ðAÞ ¼ 0

For any 5-intermediate-molecule system, the characteristic equation is

l
5
� s3l

2
þ s4l � det ðAÞ ¼ 0

For any 6-intermediate-molecule system, the characteristic equation is

l
6
� s3l

3
þ s4l

2
� s5lþ det ðAÞ ¼ 0

Here we list four properties of the characteristic number Λ for self-replicating systems:

1. Any Λ appeared in Fig 2 is the largest roots of either of the four characteristic equations

above, which also means that any Λ is an algebraic number.

2. The self-replicating systems that is characterised by the golden ratio ϕ have at least four

types of intermediate molecules.

3. From Eq (14), we see that for any 3-intermediate-molecule system, the absolute values of all

of A’s eigenvalues are equal, and thus L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðAÞ3

p
. Therefore, any 3-intermediate-mole-

cule self-replicating system is an integer self-replicating system with p = 3 and R = det(A).

4. From our simulations, we observed that for any integer self-replicating system, some of its

recurrence matrix A’s eigenvalues might be zero and all of other eigenvalues have the same
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absolute value
ffiffiffi
Rp
p

where p and R are some positive integers. Based on this observation, we

propose the following hypothesis.

Hypothesis: If any m × m matrix A satisfies all the six conditions above, and also satisfies

that there exist positive integers p and R, and a non-negative and non-zero m × 1 vector N

such that Ap N = R N, then

jl1j ¼ jl2j ¼ � � � ¼ jluj ¼
ffiffiffi
Rp
p

and luþ1 ¼ luþ2 ¼ � � � ¼ lm ¼ 0

where λ1, λ2, � � �, λm are the m eigenvalues of A, and 1� u�m.

This hypothesis holds numerically for all the cases we have studied, and is a very striking

result, but we have been unable to prove it rigorously. We can construct a specific type of

graph that satisfies all the six conditions for A (each vertex of the graph represents each

type of molecule in the system while each edge is assigned the value of the corresponding

entry of A), and then prove that this type of graph has the properties the hypothesis says.

But we have not been able to prove that these conditions for A guarantee this type of graph

(personal communication with Volodymyr Mazorchuk [22]).

Population dynamics under the law of mass action

The scheme Eq (5) we applied on analysable self-replicating systems corresponds to a particu-

lar population dynamics. However, this population dynamics is inconsistent with most chemi-

cal reactions in physical scenarios: Based on the law of mass action, the rate of a chemical

reaction is, in general, equal to the arithmetic product of a predefined reaction rate constant

and the concentrations of reactants. The rate constant depends on physical properties of the

chemicals involved, while the concentrations depend on the physical conditions under which

the reaction occurs.

In paper [19], we derived formulas for reaction rates under the law of mass action, in physi-

cal scenarios: (1) all molecules are ideally gaseous; (2) the self-replicating system is a well-

mixed system and kept in a box under constant pressure and temperature; (3) the resource

molecule population in this box is kept constant but finite, achieved by a presumed external

unlimited reservoir of resource molecules. Under the law of mass action, for a synthesis reac-

tion i þ j ! iþ j, the reaction rate is (in unit s−1)

gþij ¼ oþij � Ni � Nj=N

where ω+ij is the rate constant for this synthesis reaction, Ni = Ni(τ) is the population of mole-

cule i in the box at time τ, and N = N(τ) is the total population of all the molecules in the box at

time τ. Note that the variable “time” τ is continuous, representing the physical time, which is

different from the abstract discrete variable “generation” t in the former population dynamics

Eq (5). For a decomposition reaction iþ j ! i þ j, the reaction rate is (in unit s−1)

g� ij ¼ o� ij � Niþj

where ω−ij is the rate constant for this decomposition reaction. The physical conditions and

the properties of chemicals assumed in paper [19] guarantee that rate constants ω+ij or ω−ij for

all reactions in the self-replicating system are identical, thus denoted ω. Finally, we use ordi-

nary differential equations (ODEs) to describe its population dynamics.

We now investigate system Eq (3), which is characterised by the golden ratio ϕ under the

population dynamics Eq (5) we used previously. Here, the mass action population dynamics
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for this system are

dN1=dt ¼ � oUN1=N þ 2oN2 þ oN3

dN2=dt ¼ � oN2 þ oN3 þ oN5

dN3=dt ¼ � oN3 þ oN5

dN5=dt ¼ � oN5 þ oUN1=N

8
>>>>>>>>><

>>>>>>>>>:

ð15Þ

where U is the constant population of resource molecule 4 in the box, and N = U + N1 + N2 +

N3 + N5. There are only two parameters. We set ω = 1.09986 × 1011 s−1, the same as in paper

[19], which is determined by the chemical properties and physical conditions. Note that in

physical scenarios, U is always finite. We arbitrarily set U = 1010.

Solutions of Eq (15), with initial condition N1(0) = N2(0) = N3(0) = N5(0) = 1, are shown in

Fig 3a, in log-normal scale. After a transient period in the beginning, the populations go into

an exponential growth phase (approximately from 0.5 to 2.5 × 10−10 s). The straight line in log-

normal scale implies an exponential growth. After this phase, growing slows down. Fig 3b

shows the normalised molecule population ni = Ni/(N1 + N2 + N3 + N5), to compare with Fig 1.

We observe that limτ!1(N1(τ)/N2(τ))� limτ!1(n1(τ)/n2(τ)) =1 which is not ϕ.

During the exponential growth phase, however, the normalised population ni remains

almost unchanged (Fig 3b). We further find that ni during this phase is approximately identical

to the corresponding limit value in Fig 1. That is, during the exponential growth phase in Fig

3b, n1� 0.38196, n2 = n5� 0.23606, n3� 0.14589, and thus n1/n2� ϕ. By solving Eq (15) for

various values of U, we find that the exponential growth phase always occurs, and only occurs

when the sum of populations of intermediate molecules is much smaller than population of

the resource molecule, namely, U/(U + N1 + N2 + N3 + N5)! 1. That is why, in Fig 3a, the

exponential growth phase stops around 3 × 10−10 s, when N1 + N2 + N3 + N5 becomes of com-

parable magnitude of U. Indeed, if we let U/(U + N1 + N2 + N3 + N5)! 1, Eq (15) becomes a

Fig 3. The mass action population dynamics of system Eq (3) in a physical scenario. (a) Solutions of Eq (15) in log-normal scale, i.e., x-axis is in

normal scale and y-axis is in logarithmic scale. (b) The normalised molecule populations for the same period as in (a).

https://doi.org/10.1371/journal.pone.0200601.g003
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linear ODE system, and its solutions are exponential functions. We thus have

lim
t!1

N1ðtÞ

N2ðtÞ
¼ �; if

U
U þ N1 þ N2 þ N3 þ N5

! 1

Therefore, the characteristic number of the system are transient behaviours corresponding

to the scenario that all other molecules are much fewer than the resource inside the system,

equivalently, the resource inside the system is infinite. It is interesting to note that the Jacobian

of the ODEs Eq (15) at the fixed point N1 = N2 = N3 = N5 = 0 is (A − I), where A is the recur-

rence matrix for this self-replicating system Eq (3), namely, A in Eq (4) (it is in fact a general

case that for an analysable self-replicating system, the Jacobian at the zero fixed point of its cor-

responding ODEs is always (A − I) where A is its corresponding recurrence matrix). In physi-

cal scenarios, infinite resource is not possible, so we do not often expect the characteristic

number of a self-replicating system to manifest itself.

The transitory nature of characteristic numbers in growth is not the only reason to doubt

their universal significance. Note that we also made a strong assumption about the rate con-

stants above that they are all identical, namely, ωij = ω. As rate constants are determined by the

properties of involved chemicals, different reactions are very unlikely to have the same rate

constant, in more realistic situations. This observation adds another reason we would not

expect ϕ to be widely observed in real biological systems.

There is yet another factor that limits the generality of the characteristic number of self-rep-

licating systems. Take the following system Eq (16) as an example,

1 þ 1 ! 2

3 ! 1 þ 2

5 ! 1 þ 4

2 þ 6 ! 8

8 ! 3 þ 5

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð16Þ

where molecule 6 is the resource. Under the mass action population dynamics, this system

evolves as in Fig 4. However, it is not analysable by the population dynamics Eq (5): According

to criterion 1, 2 and 3 in Section Materials and methods, system Eq (16) is a chemically realistic

self-replicating system, but intermediate molecule 1 appears twice on the reactant side, which

violates criterion 3�. Therefore, it is not analysable by Eq (5), and it thus has no such recur-

rence matrix. This stricter criterion 3� is essential in allowing us to apply Eq (5). But, it greatly

limits the number of systems that we can look at.

The factors listed above, combined with the low number of analysable systems which give

rise to ϕ, lead us to dismiss the idea that the golden ratio, or any other constant, provides any

form of universal characterisation of self-replicating systems.

Conclusion

A wide range of chemically realistic self-replicating systems can be described by recurrence

matrices that can be further characterised by an algebraic number, which is the largest absolute

value among all of the eigenvalues of the recurrence matrix. In some cases, the characteristic
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number is the golden ratio ϕ. Yet, ϕ is just one of the many numbers that might appear. These

could be otherwise an nth root of an integer, a generalised golden ratio or certain other alge-

braic numbers. The characteristic number of a self-replicating system is a transient behaviour,

corresponding to the scenario that the resource inside the system is infinite. Moreover, while

many systems can be characterised by an algebraic number, there remain many more that can-

not be characterised in this way.

Our work suggests that there is no reason to believe that ϕ or any other specific

number will characterise self-replicating systems. We do not look at data from any specific

biological system here, such as ratios of codon frequencies in DNA, but we rather argue

that when we study the vast array of all biological systems, then constants such as ϕ appear

only in a very limited range of situations. It would thus be highly unlikely that the specific,

complex self-replicating system that underlies, for example, our DNA is one such system.

Our results contradict the claim of some other authors (e.g., in paper [15]) that ϕ is

universal.

We conclude that (1) ϕ has its particular position in chemically realistic self-replicating

reaction systems in general but it is not that special since many other constants also appear,

and (2) that these constants, including ϕ, appear in chemically realistic self-replicating systems

only when there is an infinite number of resources inside the system, which is not usually the

case in practice. Whenever the golden ratio itself, or some linear function of the golden ratio,

is found to characterise the ratio of chemicals in a system, the most likely explanation is that

the relationship occurred by chance.

We suggest, instead, that a more useful approach is to develop models that characterise self-

replication and investigate their general properties. We see our chemical system and approach

as a useful step in this direction.

Supporting information

S1 Appendix. Characteristic polynomial of a matrix.

(PDF)

Fig 4. The mass action population dynamics of system Eq (16) in a physical scenario. (a) Solutions of its corresponding ODEs in log-normal scale.

Note that populations of molecule 3, 5 and 8 are always the same. (b) The normalised molecule populations for the same period as in (a).

https://doi.org/10.1371/journal.pone.0200601.g004
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