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It is widely acknowledged that the initial spreaders play an important role in the spread of
information in complex networks. Thus, a variety of centrality-based methods have been
proposed for identifying the most influential spreaders. However, most existing studies
overlook the fact that, in real social networks, it is more costly and difficult to convince
influential individuals to act as initial spreaders, resulting in a high risk to maximal spread-
ing. In this paper, we address this problem on the basis of the assumption that the activa-
tion of large-degree nodes carries a higher risk than that of small-degree nodes. We aim to
identify the initial spreaders that most effectively maximize the spreading when consider-
ing both the activation risk and the outbreak size of the initial spreaders. Analysis of ran-
dom networks reveals that the degree of the optimal initial spreaders does not correspond
to the largest node degree in the network, but is instead determined by the infection prob-
ability and difference in activation risk among nodes with different degrees. We propose a
risk-aware metric to identify the most effective spreaders in real networks. Numerical sim-
ulations show that this risk-aware metric outperforms the existing benchmark centralities
in terms of maximizing the spreading.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Social networks play an important role in the spreading of information, opinions, ideas, innovations, and rumors [1–3]. In
social networks, identifying influential spreaders can help to control the outbreak of epidemics [4], successfully advertise
new products [5], and facilitate information dissemination [6]. A recent example concerns the super-spreader events (SSEs)
associated with explosive growth in the early outbreak of COVID-19 [7]. Identifying the high-risk settings of SSEs and timely
implementation of interventions will help prevent and control future infectious disease outbreaks. Hence, the problem of
influence maximization has received extensive attention across multiple disciplines, such as mathematics, physics, computer
science, and sociology [8–10].

To date, significant efforts have been devoted to identifying influential nodes. Originally, some well-known centrality
measures were used to identify the influential nodes in complex networks, such as the degree, closeness [11], betweenness
[12], eigenvector [13], Katz [14], and subgraph [15] centralities. Kitsak et al. [16] argued that the location of a node in the
network is more important than its immediate neighbors in evaluating the spreading influence, and used the k-shell decom-
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position to measure the location of nodes in the network. If the node is located in the core of the network, it will have a
higher influence on the dissemination of information than a node located at the periphery of the network. Although some
nodes with the same ‘‘coreness” are sometimes indistinguishable under the k-shell decomposition (e.g., Barabasi–Albert net-
works and tree-like networks), the findings of Kitsak et al. have been widely disseminated and have drawn attention to the
problem. Subsequently, many new methods have been devised to identify the influential spreaders [17]. For example, Zeng
et al. presented a mixed degree decomposition (MDD) procedure to rank the spreaders by considering the residual degree
and exhausted degree (in the ks layer decomposition, nodes with a degree smaller than the ks value of the current layer
are successively pruned until no more such nodes remain; in this case, for each remaining node, the residual degree refers
to the number of links to other remaining nodes, and the exhausted degree denotes the number of links connecting to
removed nodes). In several applications, the MDD has been shown to outperform the k-shell decomposition [18]. Lü et al.
found that the H-index provided a better quantification of a node’s influence than the degree or coreness (i.e., k-shell)
[19], while Zareie et al. proposed an improved cluster rank approach for identifying influential nodes by considering the
common hierarchy of nodes and their neighborhood sets [20].

The main implicit assumption in most relevant studies is that the probability of influential individuals acting as initial
spreaders is independent of their personal influence (i.e., status level in the social network, referred to as the rank, deference,
or popularity). When dealing with real applications involving influence maximization, however, some realistic factors need
to be considered (e.g., the cost and accessibility of influential individuals). In related work, researchers have proposed a vari-
ety of methods for identifying influential individuals whom marketing managers should try to seed to promote their prod-
ucts on online social networks. The high-influence seeding targets may produce higher returns, but are associated with the
following risks. (1) There is a constraint on the budget of promotional activities. In marketing, hiring higher-influence indi-
viduals to promote products incurs higher costs than hiring average people. (2) Although marketing managers may be will-
ing to pay this higher cost, celebrities may not wish to promote products because of duty or time constraints [21], resulting
in a high risk associated with maximizing the spreading. Related empirical studies have confirmed that the probability of
responding to an endorsement request is dependent on status, and declines sharply with the status difference in a user-
generated network [22]. To make the problem closer to the real-world situation, we relax certain assumptions and attempt
to capture the reality inherent in the activation risk of initial spreaders. Here, we assume that individuals with higher influ-
ence tend to be activated (i.e., agree to act as initial spreaders) at a relatively high risk. When considering both the outbreak
size and the activation risk of the target individual, selecting initial spreaders based on existing centrality metrics may fail to
maximize spreading in complex networks.

In this paper, we generalize the traditional problem of identifying influential spreaders by considering the risk of initial
node activation. We assume that the probability of activating nodes to act as initial spreaders decreases with increasing node
degree. For simplicity, we use the exponential decay function to approximate the relation between the activation probability
and the node degree. The expected value of the outbreak size over the activated probability quantifies the effective spreading
coverage of nodes (i.e., the expected value of the number of infected nodes in a spreading event initiated by a single node).
Using random networks, we analyze the degree value of the optimal initial spreaders using the bond percolation model. The
results suggest that the optimal seed policy (i.e., optimal initial spreaders for maximizing the effective spreading) does not
focus on the largest-degree node in the network. Moreover, we verify that existing centrality metrics are correlated with the
degree using a real-world network. Simply discounting for the degree in existing centralities might not be sufficient to iden-
tify the most effective spreaders. Therefore, it is necessary to devise a new method for this case. We then propose a risk-
aware method that identifies the most effective spreader, further maximizing the effective spread of information. The per-
formance of the risk-aware centrality is tested on disparate real networks using a susceptible–infected–recovered (SIR)
model. Numerical simulations show that our method outperforms existing benchmark centralities (i.e., the ratio between
existing centralities and degree).
2. Method

2.1. Maximizing spreading with risk assigned to node activation

We briefly describe the problem of spreading when there is a risk associated with node activation. The basic idea is that it
is difficult to convince an individual with more followers in a social network (i.e., a larger-degree node) to act as the initial
spreader than an individual with fewer followers (i.e., smaller-degree node). We denote this as the risk of activating the node
for spreading. Although the node with a larger degree could disseminate information to a large fraction of the population,
this node may refuse to initiate contagion due to the higher activation risk. A natural problem is to identify which node
should be selected as the initial spreader so as to maximize the spreading under this assumed risk of node activation.

To address this problem, we first quantify the activation risk of nodes. Based on the assumption that the activation risk
decreases with the node degree, we employ the exponential decay function to characterize the negative relation between
degree and activation probability. This function is selected as it is tractable and agrees well with our intuition in real-
world scenarios. A detailed discussion about the selection of this function form is given in [sec:Appendix F] Appendix F.
The exponential decay function decreases monotonically and maps the value of the degree (i.e., the number of immediate
neighbors of a node) to the range [0, 1]. The activation probability of nodes is given by
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pi ¼ e�
kki
kh i ; ð1Þ
where ki; kh i, and k denote the degree of node i, the average degree of the network, and the exponential decay constant,
respectively. The decay constant is called the risk parameter for determining the difference in activation probabilities among
nodes with distinct degrees. When k ¼ 0, the problem degenerates to the original definition, because each node in the net-
work has the same activation probability. Activation risk only emerges when k > 0. A larger value of k corresponds to a
higher risk when trying to activate large-degree nodes as initial spreaders. pi represents the probability that node i agrees
to act as the initial spreader. The spreading coverage si is defined as the ratio of infected nodes to all nodes in the network
when the spreading originates from node i. Taking into account the activation risk of initial spreaders, the expected value of
the spreading coverage of nodes is naturally regarded as the effective spreading coverage. Thus, the effective spreading cov-
erage of node i can be easily expressed as ~si ¼ pi � si. In this paper, we employ the effective spreading coverage as a target
function to quantify the practical outbreak size of spreading initiated from a target node with a given activation risk. The
problem is illustrated in Fig. 1.
2.2. SIR model

The risk of node activation is more common in real problems such as advertising. Thus, we describe the spreading process
as the dissemination of information on social networks. SIR models accurately describe the information spread in social
media [23,24]. Therefore, we use an SIR model to simulate this process on disparate empirical networks. In the SIR model,
individuals are classed into three states: susceptible (S), infected (I), and recovered (R). S nodes do not carry the disease and
can be infected. I nodes carry the disease and can infect others. R nodes either die or recover, and are immune to further
infection. At the beginning of the dynamics, all nodes are in the susceptible state, except for an initial infected spreader.
At each time step, nodes in the infected state infect their neighbors in the S state with probability b, then immediately trans-
form from infected to recovered. The R nodes never change their state. The process continues until there are no infected
nodes in the network. At the end of the dynamics, the total number of infected nodes is calculated by counting the number
of nodes in the recovered state. The spreading coverage of nodes is calculated by the ratio of infected nodes to all nodes in the
network. Due to the stochastic nature of the model, all experimental results are obtained by averaging over 1000 indepen-
dent numerical simulations with the same initial conditions.
Illustration of the problem for maximizing spreading with risk in node activation. We assume that the probability of initial node activation
es with the node degree when considering realistic factors such as the cost and accessibility of a node. The effective spreading coverage is quantified
xpected value of the outbreak size over the activation probability. The degrees of two selected nodes (red and blue) in the ca-Netscience network are
3, respectively. Although using the red node as the initial spreader could infect a larger number of nodes, this node has the smallest activation
ility in the network. In subplots (a) and (b), we show the contagion triggered by the two nodes under a critical infection rate using an SIR model.
sly, the number of infected nodes is larger when originating from the red node than from the blue, but the effective spreading coverage of the red
lower than that of the blue node (k ¼ 0:2).
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2.3. Degree of optimal initial spreaders for maximizing the effective spreading coverage on random networks

The relation between the SIR and bond percolation models was studied by Newman [25]. The SIR model with an infection
rate of b is equivalent to a bond percolation model with a bond occupation probability of T. The bond percolation model gives
the exact mean size of the SIR epidemic outbreak triggered from a randomly chosen single node. Here, we investigate the
maximum effective spreading coverage on a random network with a given degree distribution using the bond percolation
model. We also analyze the node degree of the optimal initial spreader. To this end, we first derive the mean size of the out-
break that originates from a single node with a degree of k. The formula can be written as follows:
skh i ¼ 1þ kb
1� bG0

1 1ð Þ ;G
0
1 1ð Þ ¼

k2
D E

� kh i
kh i ; if b < bc; ð2Þ
where kh i; k2
D E

, and bc are the average degree of the network, second moment of the degree, and critical infection rate,

respectively, and bc ¼ kh i
k2h i� kh i. G1 xð Þ denotes the generation function of the degree distribution of nodes reached by following

a randomly chosen edge, G1 xð Þ ¼P1
k¼1

kpk
kh i x

k�1. G0
1 1ð Þ is the derivative of G1 xð Þ at x ¼ 1. A detailed description of G1 xð Þ and the

derivation of Eq. (2) are given in [sec: Appendix A] Appendix A. Here, we only consider cases where the infection rate is less
than the critical infection rate (b < bc). In the case of larger b, the role of individual nodes is no longer important, as the final
spreading coverage is independent of the location from which the infection originated. Combining Eqs. (1) and (2), we have
~skh i ¼ e�
kk
kh i 1þ kb

1� bG0
1 1ð Þ

� �
: ð3Þ
Eq. (3) represents the mean size of the effective spreading coverage initiated from a single node with degree k on a random
network. By differentiating with respect to k, we obtain
@ ~skh i
@k

¼ e
kk
kh i � k

kh i 1þ kb
1� bG0

1 1ð Þ
� �

þ b

1� bG0
1 1ð Þ

� �
: ð4Þ
The degree of the optimal node (k�) corresponding to the maximum effective spreading coverage ~s�h i can be obtained by set-

ting @ ~skh i
@x ¼ 0:
k� ¼ kh i
k

� 1� bG0
1 1ð Þ

b
: ð5Þ
Substituting G0
1 1ð Þ ¼ 1

bc
into Eq. (5), we further simplify this equation as
k� ¼ kh i
k

�
1� b

bc

b
: ð6Þ
Thus, the degree of the optimal node depends on the infection rate b and the risk parameter k, because kh i and bc are constant
for a given degree distribution. This result suggests that the optimal initial spreaders for maximizing the effective spreading
coverage are different from those in the traditional problem (i.e., influence maximization problem on a random network).
Additionally, substituting Eq. (6) into Eq. (3), we find the mean size of the maximum effective spreading coverage ~s� triggered
from nodes with k� on a random network with a given degree distribution to be
~s�h i ¼ e
� 1� k

b kh iþ k
bc kh i

h i
bcb kh i

k bc � bð Þ : ð7Þ
We further analyze k�. In Eq. (6), k� is codetermined by k and b. Specifically, we wish to analyze the effect of these variables

on the degree of the optimal spreader by fixing a parameter. (1) If we take the limit of b as limb!bc
kh i
k � 1� b

bc
b , the optimal

degree k� ¼ kh i
k . As k ! 0; k� ! 1; as k ! 1; k� ! 0. The optimal degree of the nodes decreases with k for a fixed b. This tells

us that, in a higher-risk condition, the optimal spreaders shift to lower-degree nodes. (2) By setting k ¼ kh i, the optimal
degree k� ¼ 1

bc
� 1

b. As k
� increases monotonically with b, larger-degree nodes have a comparative advantage in terms of max-

imizing the effective spreading coverage as the infection rate increases.

2.4. Risk-aware metrics

In related studies, various centrality metrics have been proposed to identify influential spreaders or important nodes
[16,26,27]. When risk is incorporated into node activation, analysis of the optimal initial spreaders within random networks
reveals that the optimal seed policy is obviously distinct from the largest-degree node selected in the original problem. This
suggests that it might be not efficient to use existing metrics to identify the initial spreaders in a real network. Moreover,
4
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correlation analysis between the degree and other metrics has verified that existing centrality metrics do not perform suf-
ficiently well in the identification of effective spreaders because they are correlated with the degree (for this correlation
analysis, see [sec: Appendix C] Appendix C). Therefore, to maximize the effective spreading, it is necessary to design a
new measure for real networks.

The analytic results show that the degree value of the optimal spreaders is inversely proportional to the risk parameter k
and has a positive relation with the infection rate b, suggesting that small-degree nodes linked to many hubs are more likely
to maximize the effective spreading. Inspired by this analytic result, we consider two factors in designing the new metric,
namely the outbreak size and activation risk. First, we expect the metric to select nodes linked to many hubs, because
the spreading initiated from such nodes will cover more nodes with the help of the neighboring hub under a larger infection
rate b, although this requires that the node degree itself is not too small (this corresponds to the analytical solution where
the optimal degree value has a positive relation with the infection rate b). Second, the initial spreaders should be small-
degree nodes when the activation risk k is relatively high (this corresponds to the analytical solution in which the optimal
degree value is inversely proportional to the risk parameter k). Therefore, the effective spreaders could be better character-
ized by the following two aspects: (1) spreaders with a strong spreading ability (e.g., possessing many high-influence neigh-
bors) and (2) spreaders associated with lower activation risk (e.g., smaller-degree nodes).

In this paper, we propose the risk-aware (RA) metric to identify the most efficient spreaders by rewarding nodes with
higher-degree neighbors and penalizing higher-degree nodes. The risk-aware metric of node i is defined as follows:
RAi ¼
X
j2s ið Þ

kj
ki þ kj

� �h

; ð8Þ
where ki; s ið Þ; kj are the degree of node i, the neighbor set of node i, and the degree of node j, respectively. kj
kiþkj

denotes the

potential influence of node i obtained from neighbor j. The potential influence refers to the node’s neighbors having sufficient

influence to initiate spreading, although the node itself has lower influence. If ki ¼ kj;
kj

kiþkj
¼ 1=2; if ki � kj;

kj
kiþkj

� 1; and if

ki � kj, then
kj

kiþkj
� 0. As a consequence, kj

kiþkj
2 0;1ð Þ. In this paper, the risk parameter k determining the risk difference

among nodes with distinct degrees is incorporated into the defined problem. To identify the most effective spreader under
different conditions (i.e., various k), the parameter h is introduced to adjust the potential influence obtained from different
neighbors. When h ¼ 0, the potential influence obtained from different neighbors is equal, and the risk-aware metric degen-
erates to the degree. When h > 0, the lower potential influence obtained from neighbors will be largely weakened by an

increase in h. In other words, small-degree nodes are likely to have larger potential influence, because the term kj
kiþkj

� �h
plays

a more important role in the contribution to RA than the number of neighbors. Intuitively, a node has a large RA value if it is
connected to many other nodes that have higher degrees. In fact, it is hard to estimate which nodes have large RA values. For
instance, when the degree of node i is rather small, the potential influence obtained from each neighbor is relatively large.
However, the overall sum of the potential influence from neighbors is small as the node has few neighbors. To further under-
stand the RA metric, we show the node ranking for different values of h in Fig. 2. Clearly, the most highly ranked node iden-
tified by RA varies with h. As h increases, the top ranked nodes are likely to be small-degree nodes with higher-degree
neighbors. Actually, h determines the ability to identify the potential influence of nodes. Larger values of h imply that the
identified node has greater potential influence. The RA value is significantly different from traditional centrality metrics,
which measure the importance of nodes.

The computational complexity of the RAmetric is now analyzed. The procedure RiskAwareMetric G; hð Þ, described in Algo-
rithm 1, returns the RA value of each node in the network G. The computational complexity of traversing the neighbors of a
node is simply the average degree of the network kh i. If one estimates the potential influence of each node in a network using
the RA metric, the computational complexity is O M þ N kh ið Þ, where M;N are the number of edges and nodes in the network,
respectively.

Based on the idea of rewarding nodes connected to higher-degree nodes and penalizing high-degree nodes, we further
consider other metrics to identify the most effective spreaders in different functional forms. The first potential influence
metric (PI 1) and second potential influence metric (PI 2) are defined as
PI 1 ¼
X
j2s ið Þ

kj � ki
� 	

; ð9Þ
PI 2 ¼
X
j2s ið Þ

ekj�ki ; ð10Þ
where ki; s ið Þ; kj are the degree of node i, the neighbor set of node i, and the degree of node j, respectively. These two potential
influence metrics are parameter-free. PI 1 2 �1;þ1ð Þ; PI 2 2 0;þ1ð Þ. Although PI 1 might be negative, we can still rank the
nodes.
5
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Algorithm 1: RiskAwareMetric(G, h)
2.5. Centrality metrics

To confirm the effectiveness of the new metrics, we need to compare them with some baseline methods. As there is a
higher correlation between existing centrality metrics and the node degree (for this correlation analysis, see [sec: Appendix
C] Appendix C), it is not fair to use existing metrics directly as baseline methods for comparison with the new metrics. Here,
we calculate the ratio between existing centrality metrics and the node degree as baseline methods (e.g., Katz score divided
by degree). In this way, it is reasonable to compare the new metrics with the baseline methods, as proved in the correlation
analysis (see Fig. 6 in [sec: Appendix C] Appendix C). In this paper, we employ some representative centrality metrics to
obtain the baseline method. We briefly introduce these metrics.

(1) Degree. The degree of node i is defined as the number of immediate neighbors. k ið Þ ¼PN
j aij, where aij is a component

of the network’s adjacency matrix and N is the number of nodes in the network. The degree reflects the direct influence of
this node. The computational complexity of the degree is O Mð Þ, where M is the number of edges.
. 2. Illustration of top-3 nodes ranked by the RAmetric for different values of h in the ca-Netscience network. In each inset, we display the identified
get node (blue node) and its neighbors (yellow nodes) extracted from the original network, as well as the links between them. The numbers in each node
d its size denote the degree in the original network (note that not all links to neighbor nodes are shown in each inset). The numbers in the upper-left and
per-right corners specify the node label and RA score, respectively. By observing the local structure of each identified node, it is easier to understand the
ncept of the RA metric. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(2) Coreness (also called k-shell, KS) [16]. The k-shell reflects the location of a node, which is regarded as being more
important than the degree in evaluating its spreading influence. If a node is located in the core part of the network, the influ-
ence of that node will be higher than that of a node that is located at the periphery. Nodes are assigned to the k-shell by the
following steps: (1) In the first step, all nodes with degree k ¼ 1 are removed, which reduces the degree of the remaining
nodes. This process continues until no more nodes with degree k ¼ 1 remain. All removed nodes are then assigned to the
1-shell. In this process, for each remaining node, the residual degree refers to the number of links connecting a node to
the other remaining nodes, and the exhausted degree denotes the number of links connecting a node to removed nodes.
(2) In the second step, all remaining nodes with degree k ¼ 2 are removed. The process is iteratively updated until the resid-
ual degree of all remaining nodes is greater than 2, and the 2-shell is formed from the nodes removed in the second step. (3)
The process of decomposition continues until all nodes in the network have been removed. The k-shell of each node corre-
sponds to its shell layer. The computational complexity of k-shell decomposition is O Mð Þ [28].

(3) Closeness [11]. The closeness centrality (CC) is defined as the inverse of the mean geodesic distance from a node to all

other nodes. CCi ¼ 1
N�1

PN
j;j–i

1
dij
, where N is the number of nodes in the network and dij denotes the length of the shortest path

between node i and node j. Obviously, a larger closeness value corresponds to a more central node. The computational com-
plexity of this measure is O MNð Þ [29].

(4) Betweenness [12]. The betweenness measures the number of times that a node acts as a bridge along the shortest

path between two other nodes. It is defined as BCi ¼
PN

j;j–i

PN
k;k–i;k–j

rjkji
rjk

, where rjk denotes the number of shortest paths

between node j and node k and rjkji denotes the number of path passing through node i among all shortest paths between
node j and node k. N is the number of nodes in the network. This is a global centrality measure and its computational com-
plexity is O MNð Þ [30].

(5) Eigenvector [13]. The eigenvector centrality considers not only the number of immediate neighbors, but also the
influence of each neighbor. The eigenvector centrality of node i is denoted by xi ¼ 1

k

PN
j¼1aijxj, where k and aij are the largest

eigenvalue and a component of the adjacency matrix A, respectively, and xj denotes the eigenvector centrality of node j,

which can be described in matrix form as x!¼ 1
k A x!. The eigenvector centrality is widely used to measure the influence of

nodes, and its computational complexity is O N2
� �

[29].

(6) Subgraph [15]. The subgraph centrality is defined as a weighted sum of the number of all closed walks starting and

ending at node i. The subgraph centrality of node i is defined as SCi ¼
P1

k
Akð Þii
k! , where k is the length of a closed walk. Ak

� �
ii

represents the number of closed walks of length k starting and ending at node i, which corresponds to i-th diagonal entry of

the matrix Ak. Closed walks with shorter lengths have more influence on the centrality than longer closed walks in the sub-

graph centrality. The computational complexity is the same as that of the eigenvector centrality, O N2
� �

[29].

(7) Katz [14]. The Katz centrality of nodes is defined by considering all walks of different lengths, although shorter walks

are assumed to be more important than long walks. The specific formula is KCi ¼
PN

j

P1
k sk Ak
� �

ij
, where s 2 0;1ð Þ is a tunable

parameter and sk denotes the weight of a walk of length k. For the power method to converge, the value of the attenuation
factor s has to be set such that it is smaller than the reciprocal of the absolute value of the largest eigenvalue of A. According
to the original definition, the computational complexity of the exact Katz centrality is O n3

� 	
[31]. An efficient approach for

computing the Katz centrality is the Cholesky decomposition, which has a computational complexity of O N2
� �

[32].

(8) Collective influence [8]. The collective influence (CI) attempts to maximize the overall influence of multiple spread-
ers. This may output the minimal set of spreaders as the objective. The CI algorithm removes nodes progressively according
to the current CI value, defined as CI‘ ið Þ ¼ ki � 1ð ÞPj2@B i;‘ð Þ kj � 1

� 	
, where ki is the degree of node i;B i; ‘ð Þ is the ball of radius ‘

centered on node i, and @B i; ‘ð Þ is the frontier of the ball, that is, the set of nodes with the shortest path length ‘ from node i.
Here, ‘ is a nonnegative integer that cannot exceed the network diameter. The computational complexity is O NlogNð Þ [33].

(9) Nonbacktracking [34,35]. The nonbacktracking (NB) centrality mainly considers the local effect of the eigenvector
centrality, because a hub node with a higher eigenvector centrality distributes the centrality to its neighbors, which then
distribute it back again to inflate the hub’s centrality. The NB centrality prevents this reflection and excludes self-effects
in summing over neighbors. It can be calculated from the nonbacktracking matrix B (the nonbacktracking matrix can be
computed from the adjacency matrix A, see Refs. [36,35]). The nonbacktracking centrality xj of node j is defined to be the
sum of centralities over the neighbors of j; xj ¼

P
iAijv i!j, where v i!j is an element of the leading eigenvector of the nonback-

tracking matrix B and gives the centrality of node i ignoring any contribution from j. The computational complexity of NB is

O N2
� �

[36].

In the simulation experiments, the degree, KS, closeness, betweenness, eigenvector, subgraph, and Katz centralities are
implemented by the networkx package in Python. We implement the CI and NB centralities based on the original definition
of these metrics. In the CI centrality, we set the radius ‘ ¼ 3, because ‘ must be less than the diameter of the network (the
smallest diameter among disparate networks in this paper is 5, see Table 2 in [sec: Network] Appendix B).
7



Table 2
Structural properities on real networks. Structural properities include the number of nodes in the network Nð Þ, average degree kh ið Þ, second order moment of
degree( k2

D E
), maximum degree kmaxð Þ, network diameter dð Þ, assortativity coefficient rð Þ and critical infection rate bcð Þ.

Networks N hki k2
D E

kmax d r bc

ani-Mammalia 1430 5.45 48.88 34 18 0.012 0.126
ani-Aves-Songbird 108 19 519.80 56 6 �0.005 0.038
ani-Reptilia 496 3.97 25.38 17 21 0.345 0.185
ani-Dolphins 62 5.13 34.90 12 8 �0.044 0.172
bio-Celegans 453 8.94 358.49 237 7 �0.226 0.026
bio-Yeast 1458 2.67 19.05 56 19 �0.210 0.163
bio-Grid-Plant 1271 4.29 52.20 71 26 0.001 0.090
bio-Grid-Worm 3342 3.85 196.54 523 13 �0.169 0.020
bn-Mouse-Kasthuri 986 3.12 50.87 123 12 �0.242 0.065
ca-CSphd 1025 2.04 12.17 46 28 �0.253 0.201
ca-Erdos992 4991 2.98 48.83 61 14 �0.453 0.065
ca-GrQc 4158 6.46 116.09 81 17 0.639 0.059
ca-Netscience 379 4.82 38.69 34 17 �0.082 0.142
econ-Poli 2343 2.28 22.04 63 27 �0.335 0.115
econ-Mahindas 1258 12.03 456.55 206 8 �0.060 0.027
econ-Wm1 258 19.78 945.28 108 11 �0.037 0.021
email-Dnc 1833 4.79 354.22 404 8 �0.305 0.014
email-Corecipient 849 24.46 2276.19 368 8 �0.133 0.011
email-Enron-Only 143 8.71 112.59 42 8 �0.020 0.084
email-Univ 1133 9.62 179.82 71 8 0.078 0.057
hs-Arenas-Jazz 198 27.70 1070.24 100 6 0.020 0.027
hs-Physical 117 7.95 79.16 26 5 �0.084 0.112
hs-Zachary 34 4.59 35.65 17 5 �0.476 0.148
ia-Crime-Moreno 829 3.55 21.69 25 10 �0.165 0.196
ia-Fb-Messages 1266 10.19 279.09 112 9 �0.084 0.038
ia-Infect-Dublin 410 13.49 252.43 50 9 0.226 0.056
inf-Openflights 2905 10.77 601.45 242 14 0.049 0.018
inf-Euroroad 1039 2.51 7.75 10 62 0.090 0.479
inf-Power 4941 2.67 10.33 19 46 0.003 0.348
inf-Usair97 332 12.81 568.16 139 6 �0.208 0.023
rt-Retweet 96 2.44 12.52 17 10 �0.179 0.241
rt-Twitter-Copen 761 2.70 22.22 37 14 �0.099 0.139
socfb-Caltech36 762 43.70 3275.75 248 6 �0.066 0.014
socfb-Haverford76 1446 82.42 10480.61 375 6 0.068 0.008
socfb-Reed98 962 39.11 2784.14 313 6 0.023 0.014
socfb-Simmons81 1510 43.69 3197.12 300 7 �0.062 0.014
soc-Karate 34 4.59 35.65 17 5 �0.476 0.148
Metabolic 1038 9.13 947.24 637 6 �0.250 0.010
Protein 1646 3.06 35.71 89 14 �0.106 0.094
web-EPA 4253 4.18 118.45 175 10 �0.304 0.037

Table 1
Improvement rate of risk-aware metric compared with other benchmark centralities in terms of the overall performance of the average Kendall rank correlation
sh i and top-1, �10, and �20 nodes’ effective spreading coverage ~snh i. The smallest improvement among the different baseline centralities is displayed in bold. In
most cases, the smallest improvement rates are still positive, indicating the advantage of the risk-aware metric.

NS sh i NS ~s1h i NS ~s10h i NS ~s20h i

Benchmark centralities RA �ð Þ RA 2:5ð Þ RA �ð Þ RA 2:5ð Þ RA �ð Þ RA 2:5ð Þ RA �ð Þ RA 2:5ð Þ
betweenness/k 186.16 164.66 216.03 212.30 184.77 184.01 147.09 152.07
closeness/k 259.06 232.09 181.49 178.16 207.72 206.90 214.23 220.56
eigenvector/k 12.51 4.06 82.21 80.06 33.92 33.56 20.46 22.88
NB/k 17.93 9.07 76.80 74.71 39.71 39.34 26.57 29.12
Katz/k 250.59 224.26 153.81 150.81 187.46 186.70 192.58 198.48
subgraph/k 8.24 0.11 21.74 20.30 6.88 6.59 �1.39 0.60
KS/k 205.06 182.15 293.63 288.97 269.67 268.69 298.11 306.14
CI(l = 3)/k 169.17 148.95 416.20 410.10 320.75 319.63 249.00 256.03
degree 108.41 92.75 83.22 81.05 84.44 83.95 69.80 73.22
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2.6. Evaluation metrics

To examine the performance of the various methods, we employ the Kendall rank correlation coefficient to estimate the
ability of centrality metrics to identify the effective spreaders. In addition, we use the average of the effective spreading cov-
erage to test the performance of each method in identifying the top-n effective spreaders. To obtain a comprehensive under-
8
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standing of each method’s performance, we define a normalized score to summarize the performance of each method in all
networks considered in this paper.

(1) Kendall rank correlation coefficient (s) [37]. Also known as Kendall’s s coefficient, this is used to assess statistical
associations based on the ranks of the data. The s test is a nonparametric hypothesis test for statistical dependence based
on the s coefficient. Any pair of observations xi; yið Þ and xj; yj

� 	
is said to be concordant if

xj � xi
� 	

yj � yi
� 	

> 08j > i; i; j ¼ 1;2; . . . ; n and discordant if xj � xi
� 	

yj � yi
� 	

< 08j > i; i; j ¼ 1;2; . . . ;n. The Kendall’s s coef-

ficient is defined as s ¼ Nc�Nd
n
2

¼ 2 Nc�Ndð Þ
n n�1ð Þ , where Nc is the number of concordant pairs and Nd is the number of discordant

pairs. Here, we use the Kendall rank correlation to investigate how the ranking based on centralities is correlated to
the ranking generated by the effective spreading coverage. According to the definition of the Kendall rank correlation,
�1 6 s 6 1. Kendall’s s coefficient will be 1 if the agreement between centralities and effective spreading is perfect, indi-
cating that the employed centrality metric accurately identifies the effective spreader.
(2) Average effective spreading coverage ( ~snh i). To systematically estimate the performance of each method to identify
the effective spreaders under various risk values, we average the effective spreading coverage ~sh i over various k
(k 2 0;0:9½ � with a step size of 0.1). When dealing with actual problems, we may only need to identify high-ranking effec-
tive spreaders, rather than all spreaders. To estimate the performance of each method in identifying high-ranking effec-
tive spreaders, we average the effective spreading coverage over the top-n effective spreaders. The formula is
~snh i ¼ 1
jr topnð Þj

X
i2r topnð Þ

Xk¼0:9

k¼0

~si kð Þ
10

; ð11Þ
where r topnð Þ denotes the set of nodes whose centrality scores are ranked in the top n (e.g., n ¼ 1;10;20) and ~si kð Þ is the
effective spreading coverage with the risk parameter set to k.

(3) Normalized score (NS). This is designed to summarize the performance of the metrics over all networks, providing a
comprehensive understanding of the overall performance. We normalize the performance of the metrics in each network
such that performance in all metrics is in the range 0;1½ �, and then average the normalized performance across networks.
The normalized score is defined as
NSm eð Þ ¼

X
i2c nð Þ

cim eð Þ�ci
min

eð Þ
cimax eð Þ�ci

min
eð Þ

jc nð Þj ;m 2 c cð Þ; ð12Þ
where e represents the evaluation metric (e.g., Kendall’s s; ~snh i), c nð Þ and c cð Þ are the set of networks and centrality metrics,
respectively, cimin eð Þ denotes the value of the worst-performing metric among all centralities in network i according to the e
evaluation metrics, cimax eð Þ denotes the value of the best-performing metric among all centralities in network i according to
the e evaluation metrics, and cim eð Þ is the value of metric m in network i according to the e evaluation metrics. jc nð Þj is the
number of networks in the dataset. Based on NSm eð Þ, we present a normalized score for each different method according to a
given estimation metric, which quantifies the overall performance in all networks. NSm eð Þ 2 0;1½ �. For Kendall’s s and ~snh i,
larger values of the normalized score indicate that the centrality metrics perform better in all networks.

3. Dataset

To confirm the accuracy of the analytic results on random networks and validate the risk-aware method, we conduct
experiments on the Erdos–Renyi network (ER) and 40 real networks. The size of these networks ranges from 34 to 4991
nodes, and their average degree varies from 2.04 to 82.42. We consider 40 small- and medium-sized networks from different
systems. Specifically, these networks include six biological networks (bio-Yeast [38], bio-Celegans, bio-Grid-Plant, bio-Grid-
Worm, Protein [39], Metabolic [40]), four collaboration networks (ca-Erdos992, ca-GrQc, ca-Netscience [41], ca-CSphd), four
animal networks (ani-Dolphins [42], ani-Mammalia, ani-Aves-Songbird, ani-Reptilia), four email networks (email-Dnc,
email-Corecipient, email-Enron-Only, email-Univ), four infrastructure networks (inf-Power [43], inf-Euroroad [44], inf-
Usair97, inf-Openflights), four Facebook networks (socfb-Calrech36, socfb-Haverford76, socfb-Reed98, socfb-Simmons81),
three ecology networks (econ-Mahindas, econ-Wml, econ-Poli), three human social networks (hs-Arenas-Jazz [45], hs-
Physical [46], hs-Zachary [47]), three interaction networks (ia-Crime-Moreno, ia-Fb-Messages, ia-Infect-Dublin), two retweet
networks (rt-Twitter-Copen, rt-Retweet), one brain network (bn-Mouse-Kasthuri), one web network (web-EPA), and one
social network (soc-Karate). The networks with unlabeled references were downloaded from the network repository [48].
Details of the analyzed networks can be found in [sec: Network] Appendix B.
9
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4. Results

4.1. Degree of the optimal initial spreaders on ER network

Taking the ER network as an example, we verify the degree of the optimal spreaders for the maximum effective spreading
coverage. The degree of the ER network has a Poisson distribution for larger N, where N is the total number of nodes in the
network. The mean degree of the ER network is kh i ¼ Npc , where pc refers to the probability of edge creation. The critical

infection rate is bc ¼ kh i
k2h i� kh i ¼ 1

Npc
because k2

D E
¼ kh i þ ki2

D
on the ER network. Substituting bc and kh i into Eq. (6), we obtain
Fig. 3.
N ¼ 10
rate b. ð
model a
k� calcu
k� ¼ Npc þ
Npc

k
� 1

b
: ð13Þ
For an ER network with given values of N and pc , we find that k� is determined by k and b. In Fig. 3(a), we show the optimal
degree plotted as a function of k and b. It is clear that k� is inversely proportional to k and has a positive relation with b. This
reveals that there is an optimal initial spreader for maximizing the effective spreading for any pair of parameters k and b.
Once risk is considered in the problem, the most effective spreader does not correspond to the largest-degree node in net-
work, but is determined by k and b. Moreover, the parameter region where k� > 0 is indicated in Fig. 3(b), as the degree value
of nodes in the connected network is greater than 0. When we take the pair of parameters located in the region where k� 6 0,
the optimal degree value of nodes will be 1.

In Fig. 3(c) and (d), we show the effective spreading coverage ~s for several pairs of parameters, as obtained from exact
numerical simulations of the SIR model on ER networks (see the green and yellow stripes in Fig. 3(b)). For these simulations,
N = 1000 and pc ¼ 0:01. For each pair of k and b, we simulate the spreading triggered from a single node in the network and
conduct 1000 experiments for each node. We then calculate the effective spreading coverage ~s by averaging over nodes with
Degree of optimal initial spreader for maximizing the effective spreading coverage on ER networks. We set the parameters of the ER network to
00 and pc ¼ 0:01. The mean degree of the ER network is kh i ¼ Npc ¼ 10. að Þ Optimal degree k� plotted as a function of risk parameter k and infection
bÞ Parameter space of k and b; the dashed line marks the region where k� > 0. cð Þ; dð Þ Effective spreading obtained from numerical simulations of SIR
s a function of degree k on ER networks. The points in each subfigure are the average of 500 ER networks. The orange dashed line denotes the exact
lated by Eq. (13).
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the same degree. The simulation results show two important findings. First, k� corresponding to the maximum effective
spreading agrees well with our analytic results (orange dashed line). Additionally, the trend in k� for different pairs of param-
eters is consistent with the analytic result, confirming the correctness of the degree of the optimal initial spreaders. The
small disagreement between the simulations and the analytic results for k� appears to be a finite size effect due to the rel-
atively small network size in the simulations. Second, k� increases with bwhen k is fixed, suggesting that it is better to target
Fig. 4. Kendall rank correlation (s) between different methods and the effective spreading coverage ~s on the ca-Netscience network. að Þ s value of
risk-aware metric for various k under distinct h. bð Þ s value of different methods plotted as a function of k. cð Þ sh i of different methods plotted as a function
of b. The error bar shows the standard deviation. dð Þ s value plotted as a function of k and h. In að Þ; bð Þ, and dð Þ, the results are obtained with a critical
infection rate bc .

Table 3
The p-value for Kendall rank correlation between different methods and effective spreading ~s. The number in "bold" denotes p > 0:05, suggesting that the
correlation is not significant. The full name of methods in the table is respectively betweenness (BTN), closeness (CLO), eigenvector (EIG), non-backtracking (NB),
subgraph (SG), k-shell (KS), collective influence (CI), risk-aware metric (RA h ¼ 2:5ð Þ), and potential influence (PI 1 and PI 2). The methods/k denotes the ratio
between methods and degree.

k BTN/k CLO/k EIG/k NB/k Katz/k SG/k KS/k CI(3)/k Degree RA(2.5) PI_1 PI_2

0 0 0 0 0 0 0 0 0 0 0 0 0
0.1 0 0 0 0 0 0 0 0 0 0 0 0
0.2 0 0 0 0 0 0 0 0 0 0 0 0
0.3 0 0 0 0 0 0 0 0 0 0 0 0
0.4 0.0087 0 0 0 0 0 0.0322 0 0 0 0 0
0.5 0.6717 0.1909 0 0 0.2584 0 0.2862 0 0.0001 0 0 0
0.6 0.0013 0.0266 0 0 0.0131 0 0.0001 0 0.7332 0 0 0
0.7 0 0 0 0 0 0 0 0 0.0041 0 0 0
0.8 0 0 0 0 0 0 0 0 0 0 0 0
0.9 0 0 0 0 0 0 0 0.0003 0 0 0 0
1 0 0 0 0 0 0 0 0.0404 0 0 0 0
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a high-degree node as the initial spreader if the infection rate is larger, even when there is a risk associated with node acti-
vation. On the contrary, for a given b; k� decreases with k, indicating that a conservative seed policy should be employed
when the risk difference for nodes with various degrees is relatively large, e.g., selecting a small-degree node as the initial
spreader.
4.2. Performance of the risk-aware metric on real networks

We now investigate the final ranking of nodes with the different methods. In principle, the ranking generated by a bench-
mark centrality metric with good performance should be as consistent as possible with the ranking based on the node’s
effective spreading coverage ~s. Here, we use the Kendall rank correlation (s) to measure the performance of the different
methods. As the parameter h is incorporated into the risk-aware metric, we first study how h affects the performance of
RA under different values of k. In Fig. 4(a), we show the s value of RA hð Þ for various k on the ca-Netscience network. For
any k, there is an optimal parameter h� that maximizes s under the current resolution of h (step size of 0.5). We find that
h� increases with k, suggesting that RA performs better with larger h in cases where the activation risk of nodes with a large
degree is far higher than that of nodes with a small degree. This is because potentially influential nodes connected to a few
high-degree nodes are assigned a higher centrality value by RA in the case of larger h, producing a higher level of consistency
with the effective spreading coverage of nodes when k is larger. Although h� varies with k within the range [0, 0.9], we could
Table 4
The p-value of Kendall rank correlation between RA and effective spreading ~s under various k and h. The number in "bold" denotes p > 0:05, suggesting
that the correlation is not significant.

k h=0 h=0.5 h=1 h=1.5 h=2 h=2.5 h=3 h=3.5 h=4 h=4.5

0 0 0 0 0 0 0 0 0 0 0
0.1 0 0 0 0 0 0 0 0 0 0
0.2 0 0 0 0 0 0 0 0 0 0
0.3 0 0 0 0 0 0 0 0 0 0
0.4 0 0 0 0 0 0 0 0 0 0
0.5 0.0001 0 0 0 0 0 0 0 0 0
0.6 0.7332 0.0027 0 0 0 0 0 0 0 0
0.7 0.0041 0.8605 0.0163 0 0 0 0 0 0 0
0.8 0 0.0038 0.7904 0 0 0 0 0 0 0
0.9 0 0 0.0113 0.0345 0 0 0 0 0 0
1.0 0 0 0 0.9913 0 0 0 0 0 0

k h=5 h=5.5 h=6 h=6.5 h=7 h=7.5 h=8 h=8.5 h=9 h=9.5

0 0.001 0.0109 0.0626 0.2026 0.4421 0.6468 0.9066 0.9002 0.7454 0.637
0.1 0 0.0001 0.0018 0.0113 0.0425 0.0864 0.1689 0.2572 0.3513 0.4373
0.2 0 0 0 0 0.0002 0.0006 0.0019 0.0042 0.0077 0.0121
0.3 0 0 0 0 0 0 0 0 0 0
0.4 0 0 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0 0 0
0.6 0 0 0 0 0 0 0 0 0 0
0.7 0 0 0 0 0 0 0 0 0 0
0.8 0 0 0 0 0 0 0 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0
1.0 0 0 0 0 0 0 0 0 0 0

Table 5
The p-value of Kolmogorov–Smirnov test for the difference of two empirical distribution under distinct infection rate b, i.e. RA h ¼ 2:5ð Þ and other
baseline methods. The full name of methods in the table is respectively degree(K), k-shell(KS), betweenness (BTN), closeness (CLO), eigenvector (EIG), Katz (KZ),
subgraph (SG), non-backtracking (NB), and collective influence(CI). The methods/k denotes the ratio between methods and degree.

b K KS/k BTN/k CLO/k EIG/k KZ/k SG/k NB/k CI(3)/k

0.02 0 0 0 0 0 0 0 0 0
0.04 0 0 0 0 0 0 0 0 0
0.06 0 0 0 0 0 0 0 0 0
0.08 0 0 0 0 0 0 0 0 0
0.10 0 0 0 0 0 0 0 0 0
0.12 0 0 0 0 0 0 0 0 0
0.14 0 0 0 0 0 0 0 0 0
0.16 0 0 0 0 0 0 0 0 0
0.18 0 0 0 0 0 0 0 0 0
0.20 0 0 0 0 0 0 0 0 0
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Fig. 5. NS of evaluation metrics for different methods in 40 networks. The numbers on the bar denote the ranking among all methods. að Þ NS based on
the average Kendall rank correlation sh i. bð Þ NS based on the standard deviation of the Kendall rank correlation Ss . cð Þ NS based on the average effective
spreading coverage ~snh i. Results shown for n ¼ 1;10, and 20. The simulation results are for a critical infection rate of bc .
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fix the parameter to make RA achieve the highest possible s under different k. When h ¼ 2:5, the risk-aware metric performs

relatively well under different k, i.e., RA h ¼ 2:5ð Þ has the lowest standard deviation Ss hð Þ ¼P0:9
k¼0

sk hð Þ� s hð Þh ið Þ2
9

� �
. Thus, we fur-

ther compare RA h ¼ 2:5ð ) with other baseline methods for various k in Fig. 4(b). The s value of RA h ¼ 2:5ð Þ is lower than that
of the subgraph, Katz, degree, and KS methods with smaller values of k, but RA h ¼ 2:5ð Þ outperforms the other methods sig-
nificantly at higher values of k, indicating that our method is more accurate than other methods in ranking the effective
spreading of nodes. Additionally, the s value of PI 1 and PI 2 is lower than that of RA h ¼ 2:5ð Þ when k < 0:6, because
high-degree nodes are penalized more heavily than in the RA metric. This could explain why s is higher in PI 1 and PI 2 than
in RA for larger values of k. Some statistical significance tests can be applied to verify the Kendall rank correlation between
the centrality value and the effective spreading of nodes (see Table 3 in [sec: Appendix D] Appendix D). In fact, we cannot
exactly determine the value of k for practical problems. To systematically study the performance of RA h ¼ 2:5ð Þ, we calculate

sh i by averaging all s over different k, i.e., sh i ¼P0:9
k¼0s kð Þ=10. This quantifies the performance of the different methods in

identifying the effective spreader under various conditions. We further compare RA 2:5ð Þ with the other methods under dif-
ferent infection rates b in Fig. 4(c). Visual observation indicates that, although sh i of RA h ¼ 2:5ð Þ for larger values of b is the
same as for the subgraph benchmark centrality, the Kolmogorov–Smirnov(K-S) test confirms that the Kendall rank correla-
tion distribution under various conditions is significantly different (see Table 5 in [sec: Appendix D] Appendix D). This result
shows that RA h ¼ 2:5ð Þ outperforms most baseline methods when the infection rate b is relatively large. Moreover, the stan-
dard deviation of s for RA 2:5ð Þ is rather low compared with that of other methods (see the error bar in Fig. 4(c)), further
revealing that our method is robust under various conditions. Finally, we investigate how k and h together affect the value
of s in Fig. 4(d). The black dashed line shows that the optimal k corresponding to the maximum s varies as h increases, sug-
gesting that RA achieves better performance with larger k as h increases. Similarly, the gray dashed line indicates that the
optimal h corresponding to the maximum s varies with k, meaning that a larger h value should be selected to identify the
effective spreaders as k increases. The two dashed lines together reveal that there is a positive correlation between k and
h. When there is greater difference in activation risks, RA with a larger h value might perform better in terms of identifying
the effective spreaders. The test of Kendall rank correlation between RA and effective spreading confirms that the correlation
for most pairs of parameters (h and k) is significant and the result can be accepted (see Table 4,5 in [sec: Appendix D] Appen-
dix D).

We now compare the RA metric with other baseline centralities on 40 disparate real networks according to the average
Kendall rank correlation sh i, standard deviation of the Kendall rank correlation Ss, and average effective spreading coverage
~snh i. Here, we employ NS to summarize the overall performance of different methods, providing a comprehensive under-
13



Fig. 6. The Kendall rank correlation between two centrality metrics on 40 networks. The RA �ð Þ denotes that parameter h is set as h� in each network
where RA(h�) has the smallest volatility over different k. að Þ The average of Kendall rank correlation between any two centralities. bð Þ The average of Kendall
rank correlation between two benchmark metrics. cð Þ The proportion of network where Kendall rank correlation between two centralities is larger than 0:5.
dð Þ The proportion of network where Kendall rank correlation between two benchmark centralities is larger than 0:5.
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standing of each metric’s performance. The value of h� in each network is determined by the lowest standard deviation Ss hð Þ
instead of the largest sh i. Therefore, RA h�ð Þ does not guarantee the best performance among all parameters, although it is
more robust than other parameters under different k. In Fig. 5,6(a), we present NS sh i for different methods. Overall, RA h�ð Þ
and RA h ¼ 2:5ð Þ outperform the other methods over the 40 real networks (normalized value of sh i for different methods
in each network are provided in [sec: Appendix E] Appendix E). The PI 1 and PI 2 metrics perform worse than
RA h ¼ 2:5ð Þ, although they are based on the same idea. The possible reason for this is that the extent to which high-
degree nodes are penalized can be controlled by h in RA. Therefore, RA with h ¼ 2:5 is a good metric in terms of identifying
effective spreaders. The value of NSSs for the various centralities over the 40 networks is shown in Fig. 5(b) (normalized val-
ues of Ss for different methods in each network can be found in [sec: Appendix E] Appendix E). Smaller values of NSSs cor-
respond to smaller values of the standard deviation of sh i. The eigenvector/k method has the lowest volatility among all
14
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methods under different k. RA h ¼ 2:5ð Þ remains relatively stable under the different risk cases, although it is outperformed by
the eigenvector/k method. Finally, the performance of RA is discussed in terms of ~snh i. Here, we identify the top-n effective
spreaders given by the different methods for n ¼ 1;10 and 20 and calculate ~snh i. NS ~snh i for the different methods is shown in
Fig. 5(c). RA h�ð Þ and RA 2:5ð Þ give higher NS values for identifying the top 1 and 10 nodes compared with the other baseline
methods. Overall, RA 2:5ð Þ outperforms all other methods except RA h�ð Þ over the 40 networks, which again confirms that
RA 2:5ð Þ is a good predictor for identifying effective spreaders.

To demonstrate the advantages of the risk-aware metric in terms of accuracy, we present the improvement in the accu-
racy rate compared with the other baseline centralities in Table 1. Clearly, RA(*) and RA(2.5) have positive improvement
rates (i.e., in NS sh i;NS ~s1h i;NS ~s10h i;NS ~s20h i) when compared with the subgraph centrality, which is the state-of-the-art centrality
measure among those considered here. The improvement rate in the overall accuracy NS sh i is around 8%, and the spreading
coverage initialized from the most highly-ranked node can be over 20% greater than that using the subgraph centrality. For
the other baseline centralities, our method produces even more significant improvements. The results suggest that risk-
aware metrics could be used to identify effective spreaders more accurately than other baseline centralities. Additionally,
our method has a computational complexity of O mþ n kh ið Þ. The risk-aware metric employs local structural information
to estimate the potential influence of nodes, which significantly reduces the runtime in large-scale networks. The subgraph,
eigenvector, and nonbacktracking centralities have a computational complexity of O n2

� 	
. Obviously, our method produces a

significant advantage in dealing with large-scale networks. In summary, the risk-aware metric is a more efficient means of
maximizing the spreading than other baseline centralities.
5. Conclusion

As we all know, a product promoted by a celebrity on a social network will rapidly spread to millions of users, while a
similar product posted by a less-well-connected individual will not reach as many people. One of the most important factors
determining the fate of the spreading process is where the initial spreader is located within a social network with a given
connectivity pattern. To date, many methods have attempted to identify influential spreaders using only node topology fea-
tures. However, when dealing with the real application of influence maximization, most existing studies have ignored the
fact that it is more costly and difficult to convince influential nodes to act as initial spreaders, resulting in a higher risk in
terms of maximizing the spreading. Therefore, we have introduced the activation risk of initial spreaders into the problem.
In this paper, we assumed that the probability of nodes agreeing to act as initial spreaders depends on their degree, with
large-degree nodes having a lower activation probability than small-degree nodes. For simplicity, we used the exponential
decay function to map the degree of the node into the activated probability and introduced a risk parameter k to determine
the difference in activation risk over various nodes. Through the theoretical results obtained from the percolation model on
random networks, we found that the degree of the optimal initial spreader depends on k and the infection rate b, rather than
the node degree. Moreover, we confirmed our findings through numerical simulations conducted with the ER network. In a
real-world network, we analyzed the correlation between existing centralities and the degree. It was found that simply iden-
tifying the effective spreaders by discounting for the degree in existing centralities is insufficient. Thus, the risk-aware metric
was proposed to identify effective spreaders. Experimental results for the normalized score of the Kendall rank correlation
sh i and the average effective spreading coverage ~snh i on 40 disparate real networks have shown that our method outperforms
several existing benchmark centralities.

In actual problems, it is difficult to quantify the activation risk of influencers in marketing. The possibility of activating an
influencer depends on many factors, such as cost, brand awareness, and quality of content. Among these factors, the cost of
the influencer can be regarded as the main determinant of activation. Therefore, the activation risk is very relevant to the
cost of the influencer. As the cost of an influencer is an unsolved empirical problem, we introduced the activation risk to
characterize the problem, and assumed that large-degree nodes had a lower probability of being activated. To a certain
extent, the degree-decaying effect in effective spreading can be interpreted as a higher cost. In addition, we employed the
exponential decay function to describe the negative relation between the node degree and the activation risk. This functional
form offers analytic tractability and produces reasonable analytic results that agree with our intuition. In fact, the conclu-
sions obtained from our results rely on the specific form of the activation function, as proved in [sec:Appendix F] Appendix
F. Although the analysis is not robust against the form of the activation function, this study has revealed that many existing
centralities might not be able to identify the effective spreaders once we consider the real factors determining node activa-
tion. For practical problems, our findings suggest that it is critical to propose new methods of identifying effective spreaders,
namely those that have a strong spreading ability but low degree, because this will allow advertising and immunization
strategies to be designed at a lower cost. The risk-aware metric not only identifies the effective spreaders, but also evaluates
the potential importance of a node in the network. Moreover, there is an additional "risk" in identifying the most influential
spreaders, because the proposed metric does not guarantee that the outbreak size of detected nodes will be maximized. The
topic covered in this paper is a general research problem, and many related issues could be studied in the near future. For
example, different functional dependencies of effective spreading on the degree could be considered in follow-up studies.
One could design the effective spreading coverage on the basis of the middle-status conformity theory [49] (i.e., individuals
who are most likely to adopt an innovation or be susceptible to social contagion are those people in the middle strata in
terms of social status).
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Appendix A. The mean size of outbreak initiated from nodes with degree k

The mean size of the outbreak initiated from a randomly chosen node has been given by the bond percolation model and
generation function[25]. Here, we wish to get the mean outbreak size of the disease skh i triggered from the single node with
the degree k on a random network. The ultimate size of the outbreak starting with a single infective node would be precisely
the size of the cluster of nodes that can be reached from the initial node. In fact, the SIR model is equivalent to a bond per-
colation with bond occupation probability T. We employ the percolation model and generation function to give the exact
mean size of the outbreak initiated from the single node with the degree k.

Firstly, we need to define some generation functions because it could generate the probability distribution and easily
work than probability distribution itself (The crucial properties of generation function could see the work [50]). For instance,
a generating function of degree distribution is as follow,
G0 xð Þ ¼
X1
k¼0

pkx
k; ð14Þ
the mean degree kh i of the node in the network is given by
kh i ¼
X
k

kpk ¼ G0
0 1ð Þ: ð15Þ
If we follow an edge to the node at one of its ends, the probability of the reached nodes with degree k is qk ¼ kpk
kh i . In general,

we will concern with the number of ways of leaving such a node excluding the edge we arrived along, which is the degree
minus 1. The distribution of degrees of the nodes reached by following a randomly chosen edge is generated by
G1 xð Þ ¼
X1
k¼1

kpk

kh i x
k�1 ¼ G0

0 xð Þ
G0

0 1ð Þ : ð16Þ
For a node with degree k, the probability of node having exactly m edges occupied from the k edges follows the binomial

distribution k
m

� �
Tm 1� Tð Þk�m, hence the probability distribution of occupied edges for a node with degree k is generated

by Eqs. 17,
Gk
0 x; Tð Þ ¼

X1
m¼0

k

m

� �
Tm 1� Tð Þk�mxm ¼

Xk
m¼0

k

m

� �
Tm 1� Tð Þk�mxm ¼ 1� T þ xTð Þk ¼ 1� T 1� xð Þð Þk: ð17Þ
Likewise, the probability distribution of occupied edges leaving the node arrived by following a randomly chosen edge is
generated by Eqs. 18
G1 x; Tð Þ ¼
X1
m¼0

X1
k¼m

qk

k

m

� �
Tm 1� Tð Þk�mxm ¼ G1 1� T 1� xð Þð Þ: ð18Þ
We define the qs Tð Þ as the distribution of cluster size of nodes reached by following a randomly chosen edge. Let H1 x; Tð Þ be
the generating function for this distribution as is shown in the Eqs. 19,
H1 x; Tð Þ ¼
X1
s¼0

qs Tð Þxs: ð19Þ
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The H1 can be broken down into an additive set of contributions as follows. We follow an edge to reach the cluster, which
might be consisted by the following two parts: (1) a single node with no occupated edges connected to it other than the one
along which we passed to reach it; (2) a single node with any number m (m > 1) of occupated edge attached to it excluding
the one along which we have reached it. Each occupated edge leading to another cluster whose size distribution is also gen-
erated by the H1. The chance that a finite cluster containing a closed loop of edges goes as N�1, and is zero in the limit of
N ! 1. Using these results, the H1 x; Tð Þ can be expressed in a Dyson-equation-like self-consistent form by Eqs. 20,
H1 x; Tð Þ ¼ xG1 H1 x; Tð Þ; Tð Þ: ð20Þ

The self-consistent process mentioned-above can be a better understanding by the following analysis. By analogy with the
preceding part, then we represent the pk

s Tð Þ as the distribution of the size of cluster reachable from a starting node with the
degree k. We also give the generating function for this distribution in the Eqs. 21. The pk

s Tð Þ can be expressed by the
P s� 1jkð Þ, which means the probability of cluster size s� 1 reached from the starting node with degree k, other than the
starting node. The size of cluster s can be broken down into different contributions from the m occupied edges for a node
with a degree k, which is described in the second row of Eqs. 21. The d is the Dirac delta function. If s =

Pm
r¼1jr , then

d ¼ 1, otherwise d ¼ 0. The d s;
Pm

r¼1jr
� 	

aims to hold that the sum of clustered size reached from the occupied edge is the
same as s. The qjr

refers to the probability of cluster size jr of nodes reached by following a randomly chosen edge. By sim-

plifying the equation, we obtain the form hk
0 x; Tð Þ ¼ x 1� T 1� H1 x; Tð Þð Þð Þk.
hk
0 x; Tð Þ ¼

X1
s¼1

pk
s Tð Þxs ¼

X1
s¼1

P s� 1jkð Þ Tð Þxs ¼ x
X1
s¼0

P sjkð Þ Tð Þxs

¼ x
X1
s¼0

Xk
m¼0

k
m

� �
Tm 1� Tð Þk�m

X1
j1

� � �
X1
jm

d s;
Xm
r¼1

jr

 !Ym
r¼1

qjr
Tð Þxs

¼ x
Xk
m¼0

k

m

� �
Tm 1� Tð Þk�m

X1
s¼0

X1
j1

� � �
X1
jm

Ym
r¼1

qjr
Tð Þxjr

¼ x
Xk
m¼0

k

m

� �
Tm 1� Tð Þk�m

X1
jr

qjr
Tð Þxjr

 !m

¼ x
Xk
m¼0

k

m

� �
1� Tð Þk�m TH1 x; Tð Þð Þm ¼ x 1� T 1� H1 x; Tð Þð Þð Þk:

ð21Þ
Then, we make full use of the important properties of generating function. The mean of the probability distribution is given
by the first derivative of the generating function, evaluated at 1. Using the Eqs. 21, we obtained the mean outbreak size of
disease initiated from the node with degree k by differentiating for x. At x ¼ 1, we have
skh i ¼ @hk
0

@x
jx¼1 ¼ 1� T 1� H1 x; Tð Þð Þð Þk þ xk 1� T 1� H1 x; Tð Þð Þð Þk�1TH0

1 x; Tð Þ
h i

jx¼1: ð22Þ
By differentiating the Eqs. 20, we have
H0
1 x; Tð Þ ¼ G1 H1 x; Tð Þ; Tð Þ þ xG0

1 H1 x; Tð Þ; Tð ÞH0
1 x; Tð Þ: ð23Þ
By simplifying the Eqs. 23, H0
1 x; Tð Þ would be
H0
1 x; Tð Þ ¼ G1 H1 x; Tð Þ; Tð Þ

1� xG0
1 H1 x; Tð Þ; T½ � : ð24Þ
Due to the fact that the generating functions are 1 at x ¼ 1 if the distributions generated by generating functions are nor-
malized, hence H1 1; Tð Þ ¼ 1;G1 1; Tð Þ ¼ 1. G0

1 x; Tð Þ ¼ TG0
1 1� T 1� xð Þð Þ. Thus, we have
H0
1 1; Tð Þ ¼ 1

1� G0
1 1; Tð Þ ¼

1
1� TG0

1 1ð Þ : ð25Þ
Substuting the Eqs. 25, H1 1; Tð Þ ¼ 1 and G1 1; Tð Þ ¼ 1 into the Eqs. 22, we obtain the exact value of mean outbreak size of dis-
ease triggered from the node with degree k,
skh i ¼ 1þ kT
1� TG0

1 1ð Þ : ð26Þ
We take the derivative with respect to G1 xð Þ, it would be G0
1 xð Þ ¼P1

k¼2
k k�1ð Þpk

kh i xk�2, hence G0
1 1ð Þ ¼ k2h i� kh i

kh i . We get the mean

outbreak size of disease triggered from the node of degree k in closed form when Tc <
kh i

k2h i� kh i.
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Appendix B. Network

The risk-aware metric does not aim at specific datasets, so we examine the performance of our method on 40 datasets
from different domains. Most of the datasets are downloaded from the network repository 1, other datasets are downloaded
from the website 2. In the network repository, we randomly select 3 to 5 networks from different categories to form the corpus.
We consider the largest connected component in each original network and analyze the statistical characteristic of networks.
Detailed information see the Table 2.
Appendix C. Correlation analysis

The effective spreading ~skh i is defined as skh i � pk where the activation risk pk is quantified by the degree-decay function.
In this way, some existing centrality metrics might underperform because they are correlated with the degree. To confirm
the guess, we analyze Kendall rank correlation between degree and other centrality metrics. In fact, the correlation between
two metrics depends on the network structure and varies with real networks. Here, we use two distinct ways to analyze the
correlation in order to obtain a relative objective and comprehensive result on 40 networks. On one hand, we average the
correlation between any two centrality metrics over 40 networks, which might have some bias due to the existence of
extreme value. On the other hand, we count the ratio of the network in which Kendall rank correlation between two cen-
tralities is higher than a threshold (threshold = 0.5). If the results obtained from different method show the same phe-
nomenon, a general conclusion could be drawn.

The Kendall rank correlation between any two centrality metrics is analyzed. The results in Fig. 6(a)(c) show that central-
ity metrics could be roughly classified into three groups. The first group contains betweenness, Katz, subgraph, KS, and CI.
The Kendall rank correlation between degree and them are very strong. The second group includes closeness, eigenvector,
and NB. There is a weak correlation between them and degree. The third group includes PI 1; PI 2;RA 2:5ð Þ, and RA �ð Þ, they
are no correlated with a degree. Besides, the results show that centrality metrics within each group are correlated with each
other, further confirming the reasonability of classification. Through the correlation analysis, we verify that it is not compet-
itive to employ existing metrics as baseline methods to compare with the RA method, because the activation probability in
effective spreading has already considered the degree-decay effect and there is a strong correlation between degree and cen-
tralities in existing metrics, which naturally weakens the performance of existing metrics.

To eliminate the degree-decay effect, we calculate the ratio between centralities and degree (e.g. Katz score/degree,
betweenness score/degree) as benchmark centralities. In Fig. 6(b)(d), the results show that there is no correlation between
most benchmark centralities and degree. As for the benchmark centrality of closeness, Katz, and KS, they have a negative
correlation with the degree, which suggests that making a comparison between them and RA is more competitive when k
is very large. As a result, it is relatively fair to compare RA with other benchmark centralities by the effective spreading
as a target function.
Appendix D. Statistical tests

Some rigorous statistical tests are provided to validate the result in the main text. We firstly make the significance tests of
Kendall rank correlation between different methods and effective spreading coverage ~s. For various k, the p-value for Kendall
rank correlation coefficient is shown in Table 3. The result corresponds to Fig. 4(b). When k ¼ 0:5 and 0:6, the Kendall rank
correlation is not significant for some baseline methods, so the null hypothesis is supported, which suggests that there is no
correlation between methods (BTN/k, CLO/k, Katz/k, KS/k, Degree) and effective spreading. In most cases, the baseline meth-
ods are correlated to effective spreading. Besides, we also test the Kendall rank correlation between RA and effective spread-
ing under different pair of parameters (k and b) in Table 4, which corresponds to Fig. 4(d). For most pairs of parameters, the
p-value is lower than 0.05, which means the correlation between RA and effective spreading coverage could be accepted. But
for larger k and smaller h, or larger h and smaller k, there is no correlation between RA and effective spreading coverage.

For the Fig. 4 (c), some points among different methods might overlap due to the visual observation, we thus employ the
Kolmogorov–Smirnov test (K-S test) to measure the difference of Kendall rank correlation distribution between RA and other
baseline methods under various k, further verify that performance of our method is distinct with others. The K-S test is one of
the most useful nonparametric methods to quantify a distance between the empirical distribution function of two samples.
For a given infection rate b, two samples in the K-S test are respectively from Kendall rank correlation of both baseline
method and RA under different conditions. The p-value of the K-S test under different infection rates b is shown in Table 5.
One could see that the p-value of the K-S test is equal to 0 between RA and any baseline methods, suggesting that the dis-
tribution of Kendall correlation of RA is statistically significantly different with other baseline methods.
1 http://networkrepository.com/
2 http://networksciencebook.com/translations/en/resources/data.html

18



L. Xue, P. Zhang and A. Zeng Information Sciences 586 (2022) 1–23
Appendix E. Normalized score

According to different evaluation metrics, we normalize the performance of different methods on each network, further
obtaining the overall performance on all networks. The normalized value of Kendall rank correlation between benchmark
centralities and effective spreading could be seen in Table 6. Besides, we also show the normalized value of the standard
deviation of Kendall rank correaltion between centralities and effective spreading coverage in Table 7.
Appendix F. Activation function

In defined problem, the choice of activation function is important to analytic tractability, and the optimal initial spreaders
about the problem also depends on the slection of activation function. To provide evidence to support the claim, we choose
the 1

kc
as activation function to make a further analysis. pk ¼ 1

kc
; c is a parameter to control the risk difference among nodes

with different degree. Firstly, we substitute 1
kc
into the ~skh i ¼ pk � sk, see the Eqs. 27.
Table 6
Norma
the Tab
in bold

Netw

emai
ani-A
ani-D
ani-R
ani-M
bio-C
bio-G
bio-G
bio-Y
bn-M
ca-C
ca-E
ca-G
ca-N
econ
econ
econ
emai
emai
emai
hs-A
hs-P
hs-Za
ia-Cr
ia-Fb
ia-In
inf-E
inf-O
inf-P
inf-U
Meta
Prote
rt-Re
rt-Tw
soc-K
socfb
socfb
socfb
socfb
web-
~skh i ¼ 1
kc

1þ kb
1� b

bc

 !
¼ k�c þ k1�c

bbc

bc � b
: ð27Þ
Then, we derive analytic solution by setting @ ~skh i
@k ¼ 0; k� ¼ 1

b � 1
bc

� �
c

1�c

� �
; b < bc . (1) When �1 6 c < 0; k� is less than 0 and is

the minimal point of ~skh i, which suggests that the degree of the optimal initial spreaders in the problem should be the largest
lized value of Kendall rank correlation between methods and effective spreading in all networks. The name of methods in the table is the same as
le 3. The RA �ð Þ denotes that h is determined by the smallest standard deviation of Kendall rank correlation over different k in each network. The number
denotes the method performs well than other methods in the current network.

orks BTN/k CLO/k EIG/k NB/k Katz/k SG/k KS/k CI(3)/k Degree PI_1 PI_2 RA(2.5) RA(*)

l-Univ 0.69 0.00 0.85 0.84 0.00 0.99 0.11 0.85 0.88 0.74 0.80 1.00 0.94
ves-Songbird 0.57 0.00 0.87 0.86 0.00 0.98 0.11 0.12 0.82 0.59 0.59 1.00 1.00
olphins 0.60 0.03 0.91 0.89 0.00 0.86 0.02 0.61 0.77 0.55 0.43 1.00 1.00
eptilia 0.42 0.03 0.79 0.79 0.00 0.90 0.13 0.87 0.70 0.68 0.90 1.00 0.94
ammalia 0.47 0.00 0.76 0.72 0.01 1.00 0.15 0.94 0.68 0.73 0.83 0.95 0.93
elegans 0.18 0.57 1.00 1.00 0.50 0.78 0.63 0.00 0.22 0.95 0.84 0.64 0.95
rid-Plant 0.00 0.31 0.81 0.62 0.35 0.99 0.40 0.32 0.15 1.00 0.95 0.87 0.98
rid-Worm 0.07 0.99 0.69 0.67 1.00 0.61 0.89 0.07 0.00 0.69 0.68 0.43 0.69
east 0.07 0.51 0.86 0.87 0.51 0.86 0.34 0.23 0.00 1.00 0.97 0.93 0.93
ouse-Kasthuri 0.17 0.72 0.83 0.89 0.73 0.86 0.71 0.28 0.00 0.95 0.98 0.77 1.00
Sphd 0.06 0.62 0.70 0.44 0.88 0.93 0.61 0.07 0.00 1.00 0.94 0.95 0.91
rdos992 0.00 0.68 0.88 0.87 0.67 1.00 0.48 0.15 0.07 0.94 0.89 0.78 0.96
rQc 0.06 0.02 0.97 0.93 0.00 1.00 0.11 0.71 0.26 0.91 0.95 0.83 0.94
etscience 0.08 0.00 0.66 0.61 0.01 0.99 0.11 0.66 0.31 0.94 0.94 1.00 1.00
-Mahindas 0.56 0.00 0.97 0.97 0.01 1.00 0.32 0.65 0.89 0.98 0.89 0.99 0.90
-Poli 0.07 0.71 0.55 0.58 0.95 0.96 0.69 0.08 0.00 1.00 0.94 0.89 0.89
-Wm1 0.35 0.02 0.99 0.99 0.00 0.94 0.25 0.24 0.78 0.90 0.39 1.00 0.92
l-Dnc 0.09 0.99 0.70 0.68 1.00 0.50 0.87 0.10 0.00 0.55 0.63 0.30 0.49
l- Corecipient 0.27 0.02 0.57 0.57 0.18 0.85 0.07 0.00 0.30 1.00 0.69 0.60 0.94
l-Enron-Only 0.48 0.01 0.90 0.89 0.00 0.98 0.21 0.46 0.81 0.67 0.76 1.00 1.00
renas-Jazz 0.53 0.01 0.90 0.89 0.00 1.00 0.23 0.11 0.88 0.55 0.60 0.98 0.98
hysical 0.56 0.00 0.81 0.77 0.01 0.96 0.07 0.10 0.72 0.47 0.50 0.87 1.00
chary 0.50 0.28 0.65 0.60 0.31 0.72 0.34 0.00 0.45 0.93 0.65 0.99 1.00
ime-Moreno 0.64 0.02 0.97 0.94 0.00 0.51 0.09 0.84 0.58 0.81 0.86 1.00 1.00
-Messages 0.75 0.00 0.80 0.79 0.00 0.96 0.13 0.71 0.87 0.99 0.91 1.00 0.99
fect-Dublin 0.51 0.04 0.86 0.86 0.00 1.00 0.23 0.80 0.87 0.53 0.59 1.00 0.95
uroroad 0.06 0.16 0.99 1.00 0.00 0.31 0.08 0.95 0.37 0.34 0.59 0.73 0.81
penflights 0.16 0.00 0.87 0.87 0.00 0.87 0.29 0.40 0.34 0.99 0.86 0.71 1.00
ower 0.21 0.01 1.00 0.25 0.09 0.52 0.00 0.75 0.32 0.59 0.76 0.87 0.90
sair97 0.30 0.00 0.70 0.70 0.00 0.87 0.22 0.05 0.50 1.00 0.78 0.79 0.98
bolic 0.26 1.00 0.72 0.71 0.98 0.46 0.88 0.54 0.00 0.44 0.66 0.24 0.44
in 0.00 0.38 0.85 0.88 0.39 0.96 0.33 0.22 0.01 1.00 0.93 0.86 0.97
tweet 0.00 0.49 1.00 0.98 0.47 0.75 0.13 0.17 0.08 0.98 1.00 1.00 1.00
itter 0.00 0.49 1.00 1.00 0.46 0.95 0.24 0.17 0.00 1.00 0.94 0.87 0.95
arate 0.20 0.14 0.46 0.44 0.16 0.62 0.28 0.00 0.33 0.87 0.50 0.96 1.00
-Caltech36 0.74 0.00 0.75 0.75 0.04 1.00 0.11 0.16 0.97 0.70 0.62 1.00 1.00
-Haverford76 0.72 0.02 0.88 0.88 0.01 1.00 0.11 0.00 0.93 0.58 0.49 0.98 0.98
-Reed98 0.60 0.00 0.83 0.82 0.07 0.97 0.17 0.06 0.90 0.73 0.72 1.00 0.97
-Simmons81 0.80 0.00 0.74 0.74 0.03 1.00 0.06 0.16 0.96 0.58 0.55 0.94 0.87
EPA 0.11 0.96 0.81 0.77 1.00 0.73 0.88 0.11 0.00 0.85 0.86 0.43 0.83
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Table 7
Normalized value of the standard deviation of Kendall rank correlation between methods and effective spreading. The name of methods in the table is the
same as the Table 3. The RA �ð Þ denotes that h is determined by the smallest standard deviation of Kendall rank correlation among all parameters h (h 2 0;9:5½ �
with a step of 0.5). The number in bold denotes that Kendall rank correlation of the method has the smallest volatility under different k.

Networks BTN/k CLO/k EIG/k NB/k Katz/k SG/k KS/k CI(3)/k Degree PI_1 PI_2 RA(2.5) RA(*)

email-Univ 0.68 0.96 0.03 0.00 0.97 0.56 0.98 0.34 1.00 0.52 0.13 0.45 0.07
ani-Aves-Songbird 0.55 0.98 0.00 0.02 0.98 0.57 0.99 0.53 1.00 0.80 0.60 0.07 0.07
ani-Dolphins 0.46 0.92 0.04 0.13 0.95 0.60 0.96 0.00 1.00 0.78 0.81 0.17 0.17
ani-Reptilia 0.42 0.91 0.02 0.00 0.92 0.33 0.64 0.54 1.00 0.59 0.29 0.29 0.06
ani-Mammalia 0.68 0.93 0.00 0.00 0.95 0.53 0.95 0.71 1.00 0.63 0.29 0.17 0.12
bio-Celegans 0.69 0.92 0.12 0.11 0.94 0.55 0.76 0.30 1.00 0.36 0.00 0.65 0.19
bio-Grid-Plant 0.59 0.85 0.14 0.00 0.87 0.26 0.81 0.66 1.00 0.30 0.10 0.35 0.14
bio-Grid-Worm 0.73 0.77 0.00 0.02 0.77 0.19 0.59 0.88 1.00 0.15 0.09 0.48 0.11
bio-Yeast 0.74 0.79 0.01 0.00 0.79 0.05 0.88 0.88 1.00 0.31 0.08 0.06 0.06
bn-Mouse-Kasthuri 0.80 0.79 0.06 0.00 0.79 0.09 0.76 0.80 1.00 0.14 0.09 0.22 0.10
ca-CSphd 0.88 0.69 0.01 0.00 0.69 0.46 0.95 0.89 1.00 0.33 0.12 0.19 0.13
ca-Erdos992 0.86 0.63 0.01 0.00 0.63 0.18 0.78 0.95 1.00 0.19 0.05 0.37 0.13
ca-GrQc 0.42 0.92 0.06 0.00 0.93 0.23 0.50 0.57 1.00 0.08 0.03 0.51 0.01
ca-Netscience 0.77 0.90 0.00 0.01 0.93 0.54 0.84 0.46 1.00 0.67 0.32 0.20 0.20
econ-Mahindas 0.16 0.95 0.41 0.41 0.95 0.55 0.44 0.26 1.00 0.14 0.08 0.68 0.00
econ-Poli 0.85 0.68 0.00 0.01 0.69 0.14 0.89 0.90 1.00 0.23 0.13 0.16 0.16
econ-Wm1 0.00 0.92 0.46 0.45 0.93 0.72 0.80 0.16 1.00 0.19 0.45 0.62 0.07
email-Dnc 0.73 0.74 0.00 0.01 0.74 0.38 0.62 0.72 1.00 0.36 0.14 0.67 0.42
email- Corecipient 0.48 0.93 0.05 0.04 0.73 0.45 0.63 0.10 1.00 0.07 0.02 0.78 0.00
email-Enron-Only 0.53 0.94 0.11 0.09 0.97 0.62 0.87 0.00 1.00 0.70 0.28 0.17 0.17
hs-Arenas-Jazz 0.55 0.98 0.00 0.00 0.99 0.62 0.85 0.42 1.00 0.77 0.59 0.09 0.09
hs-Physical 0.70 0.95 0.00 0.19 0.95 0.44 0.99 0.34 1.00 0.86 0.35 0.42 0.03
hs-Zachary 0.73 0.89 0.41 0.54 0.91 0.31 0.95 0.00 1.00 0.51 0.73 0.27 0.12
ia-Crime-Moreno 0.77 0.90 0.00 0.23 0.90 0.00 0.99 0.87 1.00 0.60 0.24 0.11 0.11
ia-Fb-Messages 0.74 0.96 0.00 0.04 0.96 0.75 0.99 0.08 1.00 0.19 0.11 0.66 0.12
ia-Infect-Dublin 0.31 0.96 0.00 0.00 0.98 0.28 0.80 0.06 1.00 0.69 0.38 0.24 0.07
inf-Euroroad 0.45 0.77 0.01 0.00 0.79 0.28 0.82 0.70 1.00 0.69 0.43 0.17 0.06
inf-Openflights 0.61 0.92 0.11 0.11 0.92 0.47 0.80 0.34 1.00 0.11 0.34 0.70 0.00
inf-Power 0.62 0.86 0.12 0.00 0.87 0.30 0.91 0.80 1.00 0.73 0.46 0.25 0.14
inf-Usair97 0.74 0.96 0.00 0.01 0.96 0.60 0.83 0.03 1.00 0.28 0.04 0.80 0.22
Metabolic 0.32 0.91 0.08 0.08 0.93 0.51 0.65 0.52 1.00 0.58 0.00 0.75 0.52
Protein 0.73 0.82 0.12 0.08 0.82 0.09 0.84 0.87 1.00 0.03 0.07 0.20 0.00
rt-Retweet 0.84 0.78 0.02 0.19 0.78 0.00 0.93 0.78 1.00 0.41 0.07 0.05 0.05
rt-Twitter 0.82 0.78 0.06 0.02 0.78 0.00 0.93 0.91 1.00 0.28 0.09 0.22 0.05
soc-Karate 0.75 0.89 0.29 0.49 0.89 0.26 1.00 0.02 0.99 0.47 0.70 0.22 0.00
socfb-Caltech36 0.64 0.99 0.00 0.03 0.93 0.87 0.97 0.82 1.00 0.61 0.38 0.12 0.12
socfb-Haverford76 0.62 1.00 0.02 0.00 1.00 0.76 0.97 0.79 1.00 0.67 0.61 0.01 0.01
socfb-Reed98 0.70 0.99 0.01 0.00 0.94 0.84 0.96 0.80 1.00 0.58 0.07 0.34 0.10
socfb-Simmons81 0.66 0.99 0.02 0.00 0.93 0.79 0.98 0.65 1.00 0.60 0.23 0.16 0.09
web-EPA 0.80 0.83 0.00 0.01 0.83 0.21 0.82 0.91 1.00 0.09 0.01 0.60 0.08

Fig. 7. The effective spreading ~skh i for various c, ~skh i ¼ k�c þ k1�cq; q ¼ bbc
bc�b. Here q is set as 0:1. One could clearly see that the change of function form as

the increase of c. The k value corresponding to largest effective spreading coverage on the right side of dashed line is the optimal degree of node in the
problem.
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degree among all nodes in the network (see the Fig. 7(a)). (2) When c ¼ 0, then ~skh i ¼ 1þ kb
1� b

bc

, the problem degrenerates into

the original problem (see the Fig. 7(b)) and the degree of the optimal initial spreaders is the largest degree among all nodes in
the network. (3) When 0 < c < 1; k� is greater than 0 and corresponds to the minimal point of ~skh i (see the Fig. 7(c)). The
degree of the optimal initial spreaders in the problem is difficult to be determined. By calculating partial derivatives for
20
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c; @k
�

@c ¼ 1
b � 1

bc

� �
1

1�c

� �2
> 0, we find that k� increases as c, which suggests that the minimal point of ~skh i tends to be large as the

increase of c, further inferring that the degree of the optimal initial spreaders should be the largest degree among all nodes

when c is close to 0 and the smallest degree among all nodes when c is close to 1. (4) When c ¼ 1; ~skh i ¼ k�1 þ bbc
bc�b (see the

Fig.7(d)), which suggests the degree of the optimal initial spreaders should be the smallest degree among all nodes in the
network. In summary, the degree of the optimal initial spreaders to maximize the effective spreading ~skh i corresponds to
the largest degree among all nodes in network when c < cc , and corresponds to the smallest degree among all nodes in net-
work when c > cc (cc is a threshold). The results here are qualitatively similar to the exponential decay function, namely the
degree of the optimal initial spreaders have a negative relation with c.

We conduct the experiment to test the performance of risk-aware metric according to the activation function ( 1
kc
). c is set

from 0 to 1 with a step of 0.1. The setting of c is the same as the risk parameter k. The experimental result is shown in Fig. 8.
One could see that the performance of RA h ¼ 2:5ð Þ for sh i; Ss and ~sh i is poorer than other baseline methods. The RA h�ð Þ is used
to make a comparison, it lacks an advantage. The possible reason behind the results is that the optimal initial spreaders for
most of c in interval c 2 0;1½ � favor the largest-degree nodes in the network, and the optimal initial spreaders for less c favor
the smallest-degree nodes. In other words, the degree of the optimal spreaders is not continuous when we consider 1

kc
as an

activation function, which could be confirmed by the simulation result. In the Eqs. 27, the effective spreading
~skh i ¼ k�c þ k1�cq; q ¼ bbc

bc�b. When q is given, the ~skh i plotted as a function of k for different c could be seen in the Fig. 9(a).

One could clearly observe the change of effective spreading as the increase of c. In Fig. 9(b), the degree of the optimal initial
spreaders for various c shows the discontinuous transition. The condition where the degree of the optimal spreaders is in the
intermediate degree does not exist, which is different from the analytical result of exponential decay activation. When we
select 1

kc
as an activation function, the largest effective spreading coverage among all nodes does not correspond to the nodes

linked to many hubs but the largest-degree node or smallest-degree node in the real networks. This could explain why the RA
has poorer performance than other metrics, and degree and subgraph benchmark centrality have better performance.

Through the above analysis, the inversely proportional function might not be a good form as activation function because
it is hard to analyze the degree of the optimal initial spreaders and there is no exact analytical solution for the optimal degree
value in the defined problem. Intuitively, the optimal initial spreaders obtained from the 1

kc
is not agreed well with the real

condition, although it could characterize the negative relation between the degree and activation probability. Therefore, the
form of the activation function is important to the quantification of the problem. The conclusion obtained from the result
depends on the activation function.
Fig. 8. Based on the activation function of 1
kc
, the normalized score of evaluation metrics for different methods in all networks. að Þ The normalized score of

average of Kendall s. bð Þ The normalized score of standard deviation of Kendall s. cð Þ The normalized score of average of effective spreading coverage ~snh i.

21



Fig. 9. að Þ The ~skh i plotted as a function of k for different c; c 2 0:7;0:98½ � and q ¼ 1. bð Þ The optimal initial spreaders to maximize the effective spreading for
different c. Here, we assume that the network size is 100.
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