
ARTICLE

Free energy amplification by magnetic flux
for driven quantum systems
Ying Tang1,2,3✉

Exploring the source of free energy is of practical use for thermodynamical systems. In the

classical regime, the free energy change is independent of magnetism, as the Lorentz force is

conservative. In contrast, here we find that the free energy change can be amplified by adding

a magnetic field to driven quantum systems. Taking a recent experimental system as an

example, the predicted amplification becomes 3-fold when adding a 10-tesla magnetic field

under temperature 316 nanoKelvin. We further uncover the mechanism by examining the

driving process. Through extending the path integral approach for quantum thermodynamics,

we obtain a generalized free energy equality for both closed and open quantum systems. The

equality reveals a decomposition on the source of the free energy change: one is the quantum

work functional, and the other emerges from the magnetic flux passing through a closed loop

of propagators. The result suggests a distinct quantum effect of magnetic flux and supports

to extract additional free energy from the magnetic field.

https://doi.org/10.1038/s42005-020-00509-9 OPEN

1 Department of Physics, University of California, San Diego, La Jolla, CA 92093-0374, USA. 2 School of Physics and Astronomy, Shanghai Jiao Tong
University, Shanghai 200240, China. 3Present address: Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los
Angeles, CA 90095, USA. ✉email: jamestang23@gmail.com

COMMUNICATIONS PHYSICS |             (2021) 4:9 | https://doi.org/10.1038/s42005-020-00509-9 | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-020-00509-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-020-00509-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-020-00509-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-020-00509-9&domain=pdf
mailto:jamestang23@gmail.com
www.nature.com/commsphys
www.nature.com/commsphys


Evaluating free energy is a central endeavor of thermo-
dynamics1–4. Continuous efforts have been made to harvest
more free energy, such as from work fluctuations5, coher-

ences6, and correlations7. In the classical regime, the magnetic
field does not affect the free energy change8, as the Lorentz force
is conservative. Different from the classical regime, a magnetic
field can modify equilibrium free energy in the quantum regime9,
and makes charged particles occupy orbits with quantized energy
values known as Landau level10. These quantum phenomena for
undriven systems motivate us to explore whether magnetism can
alter free energy change for driven quantum systems, even though
the Lorentz force does not induce work in the classical regime. If
the effect existed, it would suggest a new strategy to extract
additional free energy by adding a magnetic field to driven
quantum thermodynamical systems11–14.

As a theoretical foundation to explore such effect in the driving
process, the Jarzynski equality1,15 enables us to quantify free
energy changes from nonequilibrium work measurements2,3:
ΔF ¼ �β�1ln hexpð�βWÞiclpath, where 〈⋯〉clpath denotes an
average over the classical path ensemble. The parameter β equals
the inverse of the Boltzmann constant multiplying temperature: β
= 1/(kBT). In the classical regime, it was found that the magnetic
field does not modify the Jarzynski equality16–20. The quantum
Jarzynski equality and quantum fluctuation theorems21–30 also do
not have an explicit modification by magnetic flux, including the
results applicable to the case with a magnetic field22,23,25. Thus,
whether the free energy change of a driven quantum system can
be modified by magnetism, and the free energy amplification
mechanisms itself remain elusive.

Explicitly studying the effect of magnetism in the quantum
dynamical process is challenging due to the following reasons.
First, work is no longer an observable24. A conventional way to
calculate the free energy change via work measurements utilized
the two-point measurement scheme24, and the quantum Jarzynski
equality was reached mainly by operator formulation12,21–23. On
the other hand, the interaction between a charged system and a
magnetic field, such as the Lorentz force, depends on the dyna-
mical trajectory in state space. Thus, a path-based framework is
required. To this end, a recent path integral approach31 allows the
investigation of the driving process in a path-dependent manner,
however, the case with a magnetic field was not considered.
Second, a magnetic field breaks the time-reversal symmetry.
Special care is required if using the time-reversal operation to
derive the free energy equality, because the operation may need a
change in the Hamiltonian12,25 with multiple choices proposed
before32,33. Third, both closed and open quantum systems
beyond the weak-coupling limit should be covered, as dissipation
typically exists in experiments.

In this paper, we explore the effect of applying a magnetic field
to a driven quantum system on its free energy. As a working
example, we focus on a trapped ion system in the experiment34

and theoretically consider the scenario by adding a magnetic field
(Fig. 1). By analytically calculating the free energy from the
canonical partition function, we find that the free energy differ-
ence can be amplified by adding the magnetic field (Fig. 2a). For
example, after adding a 10-T magnetic field, the predicted free
energy difference has a threefold amplification under temperature
316 nK as tuned in the experiment (Fig. 2b). The amplification
diminishes when temperature increases or magnetic intensity
decreases. In order to further dissect the amplification mechan-
ism, we investigate the driving process and study how magnetism
cooperates with work to alter the free energy change. In parti-
cular, by extending the path integral approach31 to the case with
magnetism, we find that the magnetic field does play a role in the
extended free energy equality Eq. (4), for both closed and open

quantum systems. A magnetic flux emerges in the free energy
equality as a natural consequence of using the quantum work
functional31, thus uncovering the source of the amplification. For
the open quantum system, the amplification can be suppressed by
dissipation. We further analytically evaluate the free energy
change for a dragged quantum harmonic oscillator under a
magnetic field and provide detailed experimental designs to
observe the effect.

Results
Free energy amplification by the magnetic field. We consider a
closed quantum system of a particle with mass m and charge q.
The notations p, x are the momentum and position operator
separately, with the bold font denoting the vector form. The
magnetic field is given by a vector potential: B(x)=∇ × A(x). For
clarity, we focus on a constant magnetic field, B(x)= B. A time-
dependent force ft performs work. The Hamiltonian is:

HS½f t � ¼
ðp� qAÞ2

2m
þ V ½x; f t �; ð1Þ

where the subscript S denotes the subject “system”, and V[x, ft] is
the potential. By Legendre transform, the Lagrangian is:
LS½x; f t� ¼ m _x2=2þ q _x � A� V ½x; f t �.

At each time point, after equilibration, the instantaneous
Helmholtz free energy can be evaluated through the partition
function: F½f t�¼: � β�1ln Z½f t�19,35. For two steady states with a
constant external force fτ at time t= τ and f0= 0 at time t= 0,
their Helmholtz free energy difference is:

ΔF ¼ �β�1ln ðZ½fτ �=Z½0�Þ: ð2Þ
The partition function Z[ft]= ∫dxtρ(xt, xt), where ρ(xt, xt) is
the canonical distribution of the instantaneous steady state.
For the quantum system Eq. (1), the canonical distribution
can be obtained from the propagator36,37: ρðxt ; ~xtÞ ¼
Kðxt ;�iβ_; ~xt ; 0Þjf t , with the subscript denoting the force. The
propagator is analytically solvable for specific examples36. We
next study such a case, i.e., a dragged harmonic oscillator under a
magnetic field. The system consists of a particle moving on a two
dimensional plane with x= (x, y), as illustrated in Fig. 1. The
potential is: V[x,ft]=mω2x2/2− x⊤ft, and the Hamiltonian is:
HS[ft]= (p−qA)2/(2m)+mω2x2/2− x⊤ft. This potential corre-
sponds to the experiment where the minimum position of the

Fig. 1 Schematic of a driven quantum particle under a magnetic field. A
charged particle is dragged by a harmonic potential, whose minimum
position follows an external force. The gray arrow illustrates a moving
trajectory of the potential well on a two-dimensional plane. A uniform
magnetic field (green arrow) applies to the positive-z direction, which alters
the free energy change in the quantum regime.
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potential well follows the force ft34. Before moving forward, we
clarify the terminology to be used. First, the “equilibrium free
energy” or “steady-state free energy” term those calculated from
the partition function. Second, we use “equilibrium” to denote the
stable state with zero magnetic fields and the force is constant.
The term “steady-state” refers to the stable state with a magnetic
field, as a magnetic field can induce non-detailed balance19,33

leading to a nonequilibrium steady state17,32,38. Third, the
“nonequilibrium” induced by a magnetic field is distinct from
the “nonequilibrium” caused by the external force in the driving
process. Fourth, the “free energy difference (change)” represents
the energy difference between two states, which is evaluated from
either the partition function or the free energy equality with the
forced protocol. We remark that the free energy change between
steady states and the temperature with the presence of the
external field can be defined19,22,23,25,33,38. Specifically, the
temperature was defined for the nonequilibrium steady state
with magnetic field18,19. The temperature for the quantum system
under an external field can also be defined similarly for the steady
state23,25. For example, the trapped ion system in the experi-
ment34 is under controllable temperature even with the external
force field.

When the external driving and magnetic field are absent, the
system can reduce to a one-dimensional quantum harmonic
oscillator with the equilibrium Helmholtz free energy37:
F½0� ¼ β�1ln ½2 sinhðβ_ω=2Þ� ¼ _ω=2þ β�1ln ð1� e�β_ωÞ. The
last term β�1ln ð1� e�β_ωÞ ! 0 in the zero-temperature limit
β→∞, leading to the zero-point energy ℏω/2. When a constant
external force fτ is present, the free energy difference between the
two equilibriums with and without the force is12:
ΔF ¼ �f 2τ=ð2mω2Þ. This free energy variation corresponds to
the “inclusive work”12,35, as the difference between the total
Hamiltonians of the two states. The “inclusive work” leads to a
negative free energy change.

When a magnetic field is present, the propagator for the case
without external force36 gives the free energy at steady-state
(Supplementary Note 2B): F½0� ¼ β�1fln ½2 sinhðβ_ω1=2Þ� þ
ln ½2 sinhðβ_ω2=2Þ�g, where ω1 ¼ ω̂þ ωc=2, ω2 ¼ ω̂� ωc=2,
ω̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 þ ω2
c=4

p
, ωc= qB/m. The free energy corresponds to a

sum of harmonic oscillations with the frequencies ω1 and ω2, and
is consistent with the two-dimensional version of Eq. (5.7) in9.

When both a magnetic field and an external force are present,
the propagator has not been obtained before. We calculate the
propagator and use it to evaluate the free energy difference
(Supplementary Note 2B):

ΔF ¼ � f>τ fτ
2mω2

� f>τ fτ sinhðβ_ωc=2Þ
4β_mω̂

sinhðβ_ω1=2Þ
ω2
1 sinhðβ_ω2=2Þ

� sinhðβ_ω2=2Þ
ω2
2 sinhðβ_ω1=2Þ

� �
;

ð3Þ
as the main result I of the manuscript. The first term is the two-
dimensional version of free energy difference without a magnetic
field. The second term corresponds to the modification by the
magnetic field, which tends to vanish when B→ 0. Under the
limit, Eq. (3) agrees with the experimental data in Table 1 of
ref. 34 (Fig. 2b). When the magnetic field is present, the free
energy difference can be enhanced at low temperatures (Fig. 2).
All the free energy formulas calculated from the partition
function are listed in Supplementary Table I.

Extended free energy equality with magnetic flux. The ampli-
fication is a joint effect of the driving force and the magnetic field.
To uncover the mechanism of the amplification, we need to
investigate the driving process and evaluate the free energy
change.

Through using the two-point work measurement scheme24 and
extending the path integral approach31 to the system with a
magnetic field, we evaluate the work characteristic function
without specifying a time-reversal operation in prior (see
“Methods”). We then obtain an extended quantum free energy
equality for Eq. (1), with a modification by a magnetic flux (main
result II):

ΔF ¼ �β�1ln exp �βWiβ½x� þ
i
_
qΦiβ

� �� �
qpath

; ð4Þ

where Φiβ=∬dS ⋅ B is the magnetic flux (Fig. 3), and 〈⋯〉qpath
denotes an average over the quantum path ensemble. The work

functional Wν ½x�¼:
R τ
0 dtð_νÞ�1 R _ν

0 ds_f
>
t f∂V ½xðt þ sÞ; f t �=∂f tg31,

with the superscript ⊤ denoting transpose.
To dissect the effect of the magnetic field, we used a path-based

framework, making the continuous-time work functional31 as a
natural choice. Consequently, the magnetic flux is explicitly
decomposed out, serving as another contribution to the free
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Fig. 2 Free energy amplification for a driven quantum system under a magnetic field. a Free energy difference between two steady states of the closed
quantum system in the experiment34: one state is undriven and the other is subject to a constant force. The force causes a free energy change, which can
be amplified by adding a magnetic field at low temperatures. The magnetic intensity is denoted by the color code. The horizontal axis is the effective
temperature Teff implemented in the experiment and kB is the Boltzmann constant. b Free energy differences under a set of temperatures Teff and magnetic
intensities B. The first column for B= 0 T agrees with the measurement in Table 1 by An et al.34. The results with finite magnetic field predict that the
amplification becomes threefold (≈8.94/2.62) under B= 10 T and temperature 316 nK. The analytical formula in Eq. (3), and the parameter values can be
found in “Experimental designs”.
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energy change. This reformulation of free energy equality reveals
the origin of the free energy amplification. Instead, the previous
proof on the quantum Jarzynski equality22,23 used the type of
work definition with discrete-time, such that the magnetic flux
term was not decomposed out in the historical developments on
the free energy equalities summarized in Fig. 4.

We have chosen to calculate the work characteristic function
for the forward process, instead of specifying a time-reversal
operation in prior. A time-reversal component is inherently
contained in the conjugate propagator39, where the magnetic field
is not reserved. Differently, the time-reversal operation in
ref. 12,25 has reversed the magnetic field to preserve the
microreversibility, which is regarded as equivalent to the detailed
balance condition40. For nonequilibrium systems without detailed
balance, such as induced by a magnetic field19, both the time-
reversal operations with and without reversing the magnetic field
are plausible32,33. The previous fluctuation theorem12,25 and the
present free energy equality separately use these two types of
time-reversal operations. In addition, we have employed the
present time-reversal operation without reversing the magnetic

field to derive the fluctuation theorem (Supplementary Note 1G),
and the result is the same as in ref. 25. Thus, the emergence of
magnetic flux in Eq. (4) is a consequence of using the continuous-
time quantum work functional31.

The case of an open quantum system. We next demonstrate that
free energy equality can also be achieved for open quantum
systems. An open system is modeled by Eq. (1) coupled to a bath
of harmonic oscillators. The total Hamiltonian contains the
subject system, heat bath, and coupling: Htot=HS[ft]+HB+
HSB, with

HB ¼
X
k

mkP
2
k

2
þmkω

2
kQ

2
k

2

� �
;

HSB ¼ �x> �
X
k

CkQk þ
X
k

x>CkC
>
k x

2mkω
2
k

:

ð5Þ

It describes the quantum Brownian motion known as the
Caldeira–Leggett model39. The heat bath has a set of harmonic
oscillators with mass mk, oscillation frequency ωk, momentum Pk,
and position coordinate Qk. All bath oscillators are assumed to
have the same mass: mk ¼ �m. The interaction between the system
and bath is given by the bilinear coupling between their position
coordinates, with coupling constant Ck. The last term in HSB

cancels the frequency shift on the potential function41.
From influence functional approach36,39, χðνÞ ¼ R

dx0
R
d~x0R

dxτ
R
d~xτδðxτ � ~xτÞJðxτ ; ~xτ ; τjx0; ~x0; 0Þρðx0; ~x0Þ. The total pro-

pagator is: Jðxτ ; ~xτ ; τjx0; ~x0; 0Þ ¼
R Dx

R D~x expði=_ÞS>½x; ~x�
exp½�ϕðx; ~xÞ=_�. The total action function S½x; ~x� ¼ SS½x��
~SS½~x� �

R τ
0 dtmγðx> _x þ ~x> _~xÞ, with the dissipation strength γ≐

η/(2m) and the damping constant η. The action functions SS½x�
and ~SS½~x� are the same as those of the closed system. The
real exponent ϕðx; ~xÞ ¼ ð2mγ=πÞ RΩ

0 ν̂ cothðβ_ν̂=2Þdν̂ R τ
0 dt

R t
0 ds

½xðtÞ � ~xðtÞ�> cos ν̂ðt � sÞ½xðsÞ � ~xðsÞ�.
With a similar derivation for the closed system, the full

propagator can be rewritten as: Jðxτ ; ~xτ ; τjx0; ~x0; 0Þ ¼
R DxR D~x expfði=_Þð~S0½x� � ~S0½~x�Þ þ iνWν ½x� þ ði=_ÞqΦνgI½x; ~x�:

Putting it into χ(ν), we get the same equalities in Eqs. (4) and (7),
with the average taking into account the influence of the heat
bath. Thus, the present free energy equality is valid in the open

Time

forwardconjugateFo
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Fig. 3 Illustrative diagram of the emergence of the magnetic flux term in the free energy equality. a Schematic diagram of the forced protocol in Eq. (6).
The blue (red) lines denote the force along with the forward (conjugate) propagators, and the dashed lines correspond to the measurement operator in the
two-point work measurement scheme24. The symbol ℏ is the Planck constant, ν is the parameter in the characteristic function χ(ν), τ is the time interval of
the driving process. b A schematic diagram of the propagators in the work characteristic function. The blue (red) lines are the forward (conjugate)
propagators. The two solid-line propagators are from the unitary operators. The dashed red and blue (green) lines are propagators from work
measurements (initial distribution36). All propagators contain multiple quantum paths and are idealized as a line. The magnetic flux through the closed-
loop leads to a new term in the free energy equality Eq. (4). The symbols and expressions for the propagators K are listed in the legend, where the tilde
variables are those for the conjugate process and B is the magnetic field. The expressions for the propagators K are in the Methods section. The x is the
position coordinate and f is the forced parameter, with their subscripts denoting time.
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Quantum regime

Jarzynski (1997) 
Crooks (2000)
Hummer-Szabo (2001)

Kurchan (2000)
Tasaki (2000) 
Mukamel (2003)
Talkner-Lutz-Hänggi (2007)

Ao (2008)
Pradhan-Seifert (2010)
Tang-Yuan-Chen-Ao (2015)

Free energy equality is 
independent of magnetic field 

Free energy equality is 
dependent of magnetic field 

Present result, equation (4)

Fig. 4 A brief summary of historical developments of the free energy
equalities. They include the cases without (classical regime:1,2,15, quantum
regime:21–24) and with a magnetic field17–19. The free energy equality is
independent of magnetism in the classical regime but becomes dependent
on the quantum regime.
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quantum system. We have focused on a specific case of open
systems by Eq. (5) with the Ohmic dissipation. Further extensions
are required for general dissipation42 and coupling modes43.

The example of a dragged harmonic oscillator. We analytically
calculate the work characteristic function and free energy change
for four cases of a dragged harmonic oscillator: without and with
a magnetic field, as closed and open systems separately.

For closed systems, the first case without magnetic field
(Supplementary Note 2A) demonstrates that a careful treatment
is needed to apply the forced protocol Eq. (6). We provide a
detailed analysis of the process-independence of free energy
change, as a property of the Jarzynski equality1. The second case
(Supplementary Note 2B) is a dragged harmonic oscillator with a
magnetic field as a closed quantum system. The result shows the
analytical dependence of the free energy change on magnetism, as
given by Eq. (2).

For the case of the open system without a magnetic field
(Supplementary Note 2C), the free energy varies with the
dissipation strength (Supplementary Fig. 2), indicating that the
dissipation diminishes the free energy change. For the case with a
magnetic field, the roles of both dissipation and magnetism are
analyzed (Supplementary Note 2D), where the amplification can
be suppressed by dissipation (Supplementary Fig. 3).

This example indicates that the magnetic flux in Eq. (4) is
necessary to capture the total free energy change. We further
propose two experimental designs to measure the free energy
amplification by magnetic flux below. The amplification is
induced by implementing large magnetic intensity and low-
temperature conditions, for which additional energy is
consumed34.

Experimental designs. We provide two possible experimental
designs to detect the effect of a magnetic field on the free energy
change. The first is a single ion trapped in a harmonic potential
well34, which was used to illustrate the free energy amplification
above. The other is a charged particle, for which both the case of
the closed system and open system are discussed. In practice,
careful treatments are required to implement the experiment
(Supplementary Note 1F). For example, the thermalization pro-
cedure needs a coupling to a high-temperature reservoir44,45, by
which the dissipation may reduce the free energy amplification.
In addition, the measurement of the magnetic flux term in the
free energy equality demands careful designs, as the propagation
of quantum particles needs to be mapped out. The experimental
setup to test the work functional in31 also requires to measure
such propagated trajectories, which would be useful to the case
with a magnetic field.

As the first example of the closed system, we consider a system
of a single ion, which was used to test the quantum Jarzynski
equality34. The magnetic field was not implemented in their
experiment. Here, we consider the case with the addition of a
magnetic field. Due to the close connection to the experiment, this
example was used to demonstrate the major result. We focus on
discussing this example as a closed system, and the open system
will be studied for the next example. Specifically, the 171Yb+ ion is
trapped in a harmonic potential. By using the notations and values
of the parameters in ref. 34, the scaled mass is m≐ (ωX/ν)M ≈
4.4∗10−23 kg and the total charge is e ≈ 1.6∗10−19 C. The
harmonic potential has the frequency ω ≈ 1.3∗105 s−1. The
maximum force value is fτ= 4.1∗10−21 N. The effective tempera-
ture is in the range of T∈ [300,500]nK= [3,5]∗10−7 K. If adding a
magnetic field B∈ [0,10]T, then ωc ≈ eB/m∈ [0,0.4]∗105 s−1.
Inserting these parameters into Eq. (3), we get the free energy
change as plotted in Fig. 2, Supplementary Fig. 1.

Second, we consider a system of a charged particle. As the
particle is more macroscopic, it is more convenient to
demonstrate the implementation of dissipation to the system,
such that the case of both closed and open quantum are studied
for this example. Specifically, the particle has mass density ρ=
1.5 kg m−3 and radius R= 10−6 m. Then, the particle’s mass is
m= (4π/3)ρR3 ≈ 6.3∗10−18 kg. If the surface charge density is
σ= 0.5 Cm−246, the total charge is e= 4πR2σ ≈ 6.3∗10−12 C. The
typical range of the force from an optical tweezer is [0.1, 300]pN,
and thus we take the intensity of the external force fτ to be 10−12

N. The particle is trapped by a harmonic potential with frequency
ω= 106 s−1, leading to mω2= 6.3∗10−6 kgs−2. If adding a
magnetic field B ∈ [0, 10]T, then ωc = eB/m ∈ [0, 107]s−1.
We approximately have ω̂ 2 ½0; 107=2�s−1 and ω1 ∈ [0, 107]s−1

with the magnetic field varying within the given range. When
the magnitude of ωc is comparable to ω, the effect of the
magnetic field on the dynamics is not negligible. With ℏ ≈
6.6∗10−34 m2 kgs−1, ℏω1 ≈ 6.6∗[10−28,10−27]m2 kgs−2. We
consider the temperature range T ∈ [10−4, 298]K. The Boltz-
mann energy is kBT ≈ 4.1∗10−21 N m at room temperature
T= 298 K, and kBT ≈ 4.1∗10−27 N m when T ≈ 3∗10−4 K. At
low temperature, an increase in the magnetic field leads to an
observable quantum effect as βℏω1 ~ 1.

For the open systems of this setup, we consider a phenomen-
ological way to implement dissipation. For example, dissipation
can be caused by a friction force from the surrounding
environment. The viscosity of air at room temperature is fvis ≈
1.81∗10−5 Pa s, and thus the damping constant η ≈ 6πfvisR=
2.8∗10−10 kgs−1. This value may become lower when the
temperature decreases. We take the damping constant η=
1.3∗10−12 kgs−1 at low temperature and the dissipation strength
γ= η/(2m) ≈ 105 s−1. To observe the effect of dissipation, we
consider a range of γ∈ [0, 6∗105]s−1. The sampling time in the
experiment can be ts ≤ 10 ms as in ref. 47, which gives 1=ts � γ; ω̂.
Given these parameters, Supplementary Figs. 2 and 3 illustrate the
free energy change for the second experimental setup.

Discussion
By applying Jensen’s inequality to Eq. (4), we obtain
ΔF ≤ hWiβ½x� � ði=_βÞqΦiβiqpath. It can serve as a generalized
second law of thermodynamics (Supplementary Note 1H).
Besides, there is gauge freedom on choosing the vector potential:
A0ðxÞ ¼ AðxÞ þ ∇ΛðxÞ gives the same magnetic field. As ∮dx ⋅ ∇
Λ(x)= 0, Eq. (4) is gauge invariant, which is different from the
Aharonov–Bohm effect48,49. The present effect is induced by the
closed-loop of the magnetic flux, which does not depend on the
magnetic vector potential.

Besides, the topological effect may lead to interesting phe-
nomena in the free energy change, as the magnetic flux is
quantized: qΦν= 2πnℏ. In the classical regime, the special
topology was found to cause an anomalous free energy change50.
In the quantum regime, the work statistics using an
Aharonov–Bohm flux has been investigated for charged particles
moving along a one-dimensional ring49. In addition, the
quantum-classical correspondence for work statistics has been
investigated51. Along with this direction, we have explicitly taken
the semi-classical limit of the magnetic flux term and the free
energy change (Supplementary Notes 1C and 2). When the paths
with maintaining suitable phases are allowed to interfere, the
semiclassical work distribution obtained from classical paths can
be further compared with the present work distribution.

Though the non-Markovian dynamics is relevant in various fields
and applications, such as optomechanical control52, the system
considered here is mainly Markovian. It was reported that the low-
temperature regime may be affected by non-Markovian effects52–54.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00509-9 ARTICLE

COMMUNICATIONS PHYSICS |             (2021) 4:9 | https://doi.org/10.1038/s42005-020-00509-9 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


However, the effect is not dramatic in the current setup. For
example, the experiment34 has reached the low-temperature con-
dition of 316 nK, where the dynamics of the dragged ion is still
Markovian and not yet affected by the non-Markovian effect.
Besides, the current free energy amplification appears already for
the closed quantum system, where the non-Markovian effect caused
by the coupling to the environment53 does not happen.

The steady-state free energy for the quantum Brownian motion
under a magnetic field was studied9. Differently, we calculated the
free energy change driven by an external force, which is also absent
in the quantum Langevin formalism of charged magneto-oscillator
coupled to heat bath55–57. For the case with an external force,
another study evaluates the free energy change58. However, they
used a different definition of the work from the typical two-point
measurement scheme and did not obtain the new effect of magnetic
flux. A similar system has been adopted to study Landau dia-
magnetism59. They considered a finite boundary condition, and
thus the solution to the equation of motion is distinct. Its further
generalizations include60,61, where the free energy amplification by
adding both a magnetic field and an external time-dependent
driving was not found. Besides, when the charged particle moves in
a confined area, the states should have discrete energies of Landau
levels10. The free energy change for such systems remains to be
explored. In addition, we have not considered the time-dependent
magnetic field62, but the present free energy amplification can
appear even for a constant magnetic field. Under a time-dependent
electromagnetic field, the definition of the thermodynamic work on
a charged particle needs a special care63. The generalization of the
present free energy equal to the case with the time-dependent
magnetic field is an intriguing direction. Finally, in the emerging
area of quantum information thermodynamics, it is attractive to
study whether a magnetic field can increase the information gain
such as in the quantum Maxwell demon64.

In summary, by adding a magnetic field to driven quantum
systems, we found that the free energy change can be amplified by
calculating the steady-state free energy. We further uncovered the
mechanism of the free energy amplification through deriving
extended free energy equality for the driving process. An emer-
gent magnetic flux was obtained in free energy equality, revealing
the source of the free energy amplification. The present result
suggests a distinct quantum effect of magnetic flux on the free
energy change, which would motivate a class of new explorations
for driven quantum systems.

Methods
Two-point measurement scheme. For a quantum system, the work can be
defined through the two-point measurement scheme21–24: Wj,l≐ Ej(τ)− El(0). The
probability of observing this energy difference is p(j, l) ≐ pl∣〈j(τ)∣US(τ)∣l(0)〉∣2,
where pl≐ 〈l(0)∣ρS(0)∣l(0)〉. Here, lðtÞj i is the nth energy eigenstate of the system at
time t, and USðτÞ¼: expf�i=_

R τ
0 dtHS½f t �g is the unitary operator governing the

time evolution. Corresponding to the Helmholtz free energy, the initial density
matrix is chosen as the canonical form, ρSð0Þ ¼ e�βHS ½f0 �=ZS½f0�, with the partition
function ZS½f0� ¼

R
dxe�βHS ½f0 � . The work probability distribution is P(W)= ∑j,lδ

(W−Wj,l)p(j,l), where δ(W−Wj,l) is the Dirac delta function. By taking the
Fourier transform, the work characteristic function is: χðνÞ¼: R dWeiνWPðWÞ ¼P

j;le
iν½EjðτÞ�Elð0Þ�pðj; lÞ. With inserting p(j, l), χðνÞ ¼ Tr½UsðτÞe�iνHS ½f0 �ρSð0ÞUy

s ðτÞ
eiνHS ½fτ ��. The operators e�iνHS ½f0 � and eiνHS ½fτ � correspond to the two measurements.

The force protocol. A path integral approach was recently developed for quantum
thermodynamics without magnetism31. To apply path integral, we use the coor-
dinate representation and interpolate a middle coordinate xm: χWðνÞ ¼
hxτ jUsðτÞjxmihxmje�ði=_Þ_νHS ½f0 � jx0ihx0jρSð0Þj~x0ih~x0jUy

s ðτÞj~xmih~xmjeði=_Þ_νHS ½fτ � j~xτi.
The propagators are recognized as36,39: hxτ jUsðτÞjxmi¼: Kðxτ ; τ þ _ν; xm; _νÞjf t�_ν

,

hxmje�ði=_Þ_νHS ½f0 � jx0i¼: Kðxm; _ν; x0; 0Þjf0 , h~x0jUy
s ðτÞj~xmi¼: ~Kð~xm; τ; ~x0; 0Þjf t ,

h~xmjeði=_Þ_νHS ½fτ �j~xτi¼: ~Kð~xτ ; τ þ _ν; ~xm; τÞjfτ . The tilde symbol specifies the vari-
ables for the conjugate propagators, which can be regarded as evolving backward in
time. The subscripts of K, ~K assign distinct force protocols for the forward and

conjugate propagators:

ð forward Þf t :
f0; 0< t < _ν

f t�_ν ; _ν < t < _ν þ τ

	
; ð conjugate Þ~f t :

f t ; 0< t < τ

fτ ; τ < t < _ν þ τ

	
:

ð6Þ
The force protocol is illustrated in Fig. 3a. It can be implemented by the Ramsey
interferometry scheme65. For the initial steady-state, we set f0= 0.

Work characteristic function. The propagators are given by the action functions:R
dxmKðxτ ; τ þ _ν; xm; _νÞjf t�_ν

Kðxm; _ν; x0; 0Þjf0 ¼
R Dx expfiSS½x�=_g,R

d~xm ~Kð~xm; τ; ~x0; 0Þjf t ~Kð~xτ ; τ þ _ν; ~xm; τÞjfτ ¼
R D~x expf�i~SS½~x�=_g, whereR Dx and

R D~x denote path integration. The action functions are31: SS½x�¼:R _ν
0 dtLS½x; f0� þ

R τþ_ν
_ν dtLS½x; f t�_ν �, ~SS½~x�¼:

R τ
0 dtLS½~x; f t � þ

R τþ_ν
τ dtLS½~x; fτ �.

The initial distribution is ρðx0; ~x0Þ¼: hx0jρSð0Þj~x0i. Putting them together, χðνÞ ¼R
dx0

R
d~x0

R
dxτ

R
d~xτδðxτ � ~xτÞρðx0; ~x0Þ

R Dx
R D~x expði=_ÞfSS½x� � ~SS½~x�g. In

the case with A= 031, the subtraction of the action functions is: S0½x� � ~S0½~x� ¼
~S0½x� � ~S0½~x� þ _νWν ½x�, where S0½x� ¼

R τþ_ν
0 dtðm _x2=2� V ½x; f t �Þ, ~S0½~x� ¼R τþ_ν

0 dtðm _~x
2
=2� V½~x;~f t �Þ.

When magnetic field is present with A ≠ 0, given the Lagrangian, we can
separate out the terms with A (Supplementary Note 1A):

SS½x� � ~SS½~x� ¼ S0½x� � ~S0½~x� þ q
R xτ
x0
dx � A� q

R ~xτ
~x0
d~x � A. The integrals of R xτ

x0
,R ~xτ

~x0
come from the forward and conjugate propagators separately. Besides, the

initial distribution ρðx0; ~x0Þ can be obtained from the propagator39,66:
ρðx0; ~x0Þ ¼ Kðx0;�iβ_; ~x0; 0Þj0, contributing a term q

R x0
~x0
dx � A on the exponent.

In addition, the endpoints xτ, ~xτ are identical due to the function δðxτ � ~xτÞ.
Together, the paths of all the propagators form a closed loop, as shown in Fig. 3b.
The magnetic field leads to an integral term along the closed-loop (Supplementary
Note 1B): SS½x� � ~SS½~x� þ q

R x0
~x0
dx � A ¼ ~S0½x� � ~S0½~x� þ _νWν ½x� þ qΦν . Based

on the forced protocol Eq. (6), the paths of the forward and conjugate propagators
are generally different, giving a nonzero magnetic flux Φν= ∮dx ⋅A=∬dS ⋅ B by
Stokes’ theorem.

Then, χðνÞ ¼ R
dx0

R
d~x0

R
dxτ

R
d~xτδðxτ � ~xτÞρðx0; ~x0ÞjA¼0

R Dx
R D~x

expfði=_Þð~S0½x� � ~S0½~x�Þ þ iνWν ½x� þ ði=_ÞqΦνg. It gives:

χðνÞ ¼ exp iνWν ½x� þ
i
_
qΦν

� �� �
qpath

: ð7Þ

With Eq. (7), the moments can be extracted, showing a modification by the
magnetic flux in the first order (Supplementary Note 1C,D).

The free energy equality. We next focus on the free energy change. By taking
ν= iβ and using the cyclic invariance of trace operator24, χðiβÞ ¼
Tr½UsðτÞeβHS ½f0 �ρSð0ÞUy

s ðτÞe�βHS ½fτ � � ¼ Tr½e�βHS ½fτ � �=Z½f0� ¼ Z½fτ �=Z½f0�. Then,
we reach Eq. (4) in the text.

To obtain the left-hand side in Eq. (4), we used the property of the trace on the
operators. For attaining the right-hand side, we adopted the path integral
formulation. These two views are essentially equivalent. The conventional way to
reach the right-hand side mainly utilizes the operator formulation12,21,22,24. Only
until recently, the path integral formulation for quantum thermodynamics was
proposed31, which is a necessary ingredient to generate the magnetic flux term.
This might explain why historically the magnetic flux term has not been found in
the free energy equality (Supplementary Note 1E).

Data availability
The material that supports the findings of this study is available from the corresponding
author upon request.
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