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Network structures play important roles in social, technological and biological systems. However, the observable nodes
and connections in real cases are often incomplete or unavailable due to measurement errors, private protection issues,
or other problems. Therefore, inferring the complete network structure is useful for understanding human interactions
and complex dynamics. The existing studies have not fully solved the problem of inferring network structure with
partial information about connections or nodes. In this paper, we tackle the problem by utilizing time-series data
generated by network dynamics. We regard the network inference problem based on dynamical time series data as a
problem of minimizing errors for predicting states of observable nodes and proposed a novel data-driven deep learning
model called Gumbel-softmax Inference for Network (GIN) to solve the problem under incomplete information. The
GIN framework includes three modules: a dynamics learner, a network generator, and an initial state generator to infer
the unobservable parts of the network. We implement experiments on artificial and empirical social networks with
discrete and continuous dynamics. The experiments show that our method can infer the unknown parts of the structure
and the initial states of the observable nodes with up to 90% accuracy. The accuracy declines linearly with the increase
of the fractions of unobservable nodes. Our framework may have wide applications where the network structure is hard
to obtain and the time series data is rich.

A complex system is composed of many components that
interact with each other. In general, the nodes of a com-
plex network are used to represent the elements in the sys-
tem, and the edges between nodes are used to represent
the interactions, social system, economic system, and bio-
logical system are all complex systems. The dependence
of nodes in systems is complex. How to mine the net-
work structure of the complex system to help us better
understand the behavior of the system has always been
a research and challenging problem. This paper aims to
study the problem of network structure inference under
the absence of system node information – network com-
pletion. The existing research on network completion is
to infer the complete network structure in the complex
system from the observed information. According to the
information obtained, the existing studies can be divided
into three categories: one is to use rich node feature in-
formation, the other is to use observed structural informa-
tion, and the third is to make inferences under the scenario
in which only temporal sequence information can be ob-
served. Most of the current research assumes that all the
node information can be observed, and there is less dis-
cussion about the missing information of multiple nodes
due to artificial or technical constraints.The contribution
of this paper is that it proposes a data-driven, end-to-end
method to solve the problem of network completion, and
puts forward the application of subgraph matching algo-
rithm to the network completion method, which effectively
solves the evaluation problem in network completion.

I. INTRODUCTION

Network structure plays more and more important roles in
social, technological, and economic systems1–4. The con-
nection patterns of a social network determine how fast the
opinions or ideas can spread in social media5–7; the struc-
ture of a supply chain network between companies influences
the safety of the whole market because risk may propagate
along with the links8,9; the topology of the cooperation net-
work plays a critical role for scientific innovation and individ-
ual development for young scientists10,11. Nowadays, many
big data analysis, such as recommendation, node importance
mining, community clustering, etc., rely on high-quality link
data12. However, the data of network structure is always in-
complete or even unavailable either because measuring binary
links is costly or the data of weak ties is unobservable9,13,14.
Therefore, it is urgent to find a way to infer the complete net-
work structure according to non-structural information15,16.

Link prediction, as the traditional task in network inference,
tries to infer the lost links in network structure according to
the linking patterns of existing connections17,18. Although nu-
merous algorithms have been developed to complete the un-
observable links of a large network with high accuracy19,20,
all of these approaches require the complete node information
but it is always unavailable in practice13,21. Link prediction
cannot solve the inference problem under the condition that
the network contains unobservable nodes. In real cases, we
can either obtain node information of the only partial network
or without any information about links1,22, as a result, conven-
tional link prediction algorithms cannot work.

Network completion methods have been developed in re-
cent years trying to tackle the problem we discussed above,
that is, to infer the missing connections on unobservable nodes
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according to the linking patterns between observable nodes.
The methods can be categorized into the traditional expec-
tation maximum(EM) method23,24 and graph neural network
based methods25–27. As an example of the expectation max-
imum method23, Kronecker Graph Expectation Maximum
(KronEM) algorithm based on Kronecker Graph model28 can
complete the network according to the observable links. Al-
though their algorithm can obtain a relatively high accuracy
of recovering missing links, the self-similarity property is re-
quired for the underlying network structure as an implicit con-
dition, which is always violated by some networks28. On the
other hand, with the booming development of deep learning
on graphs25–27, researchers applied graph convolution net-
work (GCN) liked models on the network completion prob-
lem. Xu et al. proposed a GCN based model, which re-
gards the process of completing a graph as a network growth
process, and learns the rules of the growth to complement
the full network29. Tran et al. solved the problem by train-
ing a graph generative model to learn the connection patterns
among a large set of similar graphs and use these patterns to
infer the missing connections21. All of these network comple-
tion methods depend on a partially observable network struc-
ture because they try to discover the latent patterns of the
observable connections and to infer the unknown structures.
Nevertheless, in some cases, the network structures are totally
unknown and only some signals of observable nodes can be
obtained, such as biological network30 and social network13.
How can we infer the whole network structure without any
information on connection patterns?

In fact, time-series data of observable node behaviours can
be another important information source31,32 which is more
or less ignored by previous studies. For example, in an on-
line social network, we can only observe the discrete retweet
events between a large set of users, neither their features
like sex, education, etc. nor their connection information is
unavailable; In a stock market, all the information that we
can obtain is the prices of different stocks, the connections
between the stocks are unknown. Thus, can we develop a
method to infer the network structure according to the time
series data representing the observable states of nodes? A
large number of methods such as Granger causality33,34, cor-
relation measurements35–37, driving response38, compressed
sensing19,39–41, and graph network42,43 etc., have been pro-
posed for reconstructing network from time series data. How-
ever, these methods can only recover the network structure of
observed networks and the functional forms of dynamics are
always limited by methods. Can we infer all network structure
including unobserved part and unobserved node states with
partial time series data of observable nodes? Some works try
to recover the information of hidden variables by learning the
dynamics of a system44. However, these works are always
based on a grid network and leave the general heterogeneous
network structure never discussed. Actually, completing or
refining links in a network by node properties and labels is
possible as shown in45,46, better network can be obtained if
we only try to improve the performance of node classification
task. Thus, a general framework for reconstructing network
topology, completing missing structures, and learning various

types of dynamics, from the time series data is possible and
necessary.

In this paper, we develop a universal framework callled
Gumbel-softmax Inference for Network (GIN) to infer the
network structure and node information from the time series
data with missing nodes. We solve the problem by finding an
optimized network structure, a set of appropriate initial states,
and an approximator of the network dynamic such that the er-
rors between the observed time series of the observable nodes
and the generated time series according to the GIN model is
minimized. GIN consists of a network generator, an initial
state generator, and a dynamics learner. The network gen-
erator is implemented by Gumbel-softmax technique, which
can use stochastic gradient descent to differentiably optimize
a network. Dynamics learning is realized by a Graph Network
(GN) model. This paper is organized as follows: in section II
we will formulate the network inference problem in an opti-
mization framework and illustrate the concrete design of each
module; the experimental results are discussed in section III.
We also point out the advantages and weak points of this work
which left for future works in section IV.

II. PROBLEM AND METHODS

In this paper, we focus on the inference problem of network
structure, initial states, and the network dynamics based on
state time series of observable nodes.

A. Problem Definition

At first, a formal definition is given. Suppose our stud-
ied system has an interaction structure described by a bi-
nary graph G = (V,E) with an adjacency matrix A, where
V = {v1, ...,vN} is the set of nodes, or interchangeably re-
ferred to as vertices, and N is the total number of nodes,
E = {ei j} is the set of edges between the nodes, and A is a
binary matrix of which each entry equals 0 or 1.

The network dynamic S (ψ,A) is defined on the graph G,
where ψ is the dynamical rule which mapping the states of
nodes xt = (xt

1,x
t
2, · · ·,xt

N) ∈Rn×d at time t to the states xt+1

at time t +1, where xt+1 = ψ(xt), and d is the dimension of
the states. Thus, time series can be generated by the network
dynamic S , which are denoted by x0:T = (x0,x1, · · ·,xT ),
where x0 is the initial state and T is the total time length of
the series.

However, not all node states can be observed by us. There-
fore, the set of nodes V can be divided into two parts: ob-
served nodes Vo and unobserved nodes Vu, where Vo∪Vu =V
and V0 ∩Vu = /0, and the corresponding state vectors xt can
also be decomposed into two parts: xt = xt

o
⊕
xt

u, where
⊕

is the vector concatenation. Thus, only the partial vector xo
can be observed.

Similarly, all of the connections E can also be decomposed
into observable connections Eo and unobservable connections
Eu, and Eo∪Eu = E, and Eo∩Eu = /0. The corresponding ad-
jacency matrix can also be decomposed, A=Ao

⊕
Au. Where,
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FIG. 1. The states of some nodes are missing (with dashed box) and only partial network structure can be observed (with bold circles), and
the aim is to infer the missing information (the dashed colored circles). In practice, network completion means to infer the “missing” element
(with dark grey color) in the adjacency matrix.

A is the adjacency matrix of the whole graph G, and Ao is the
adjacency matrix of the observed connections, and Au is the
one of unobserved connections,

⊕
is the matrix concatena-

tion after appropriate rearrangement of matrix entries(see the
example adjacency matrix in Figure 1, the gray colored entries
with the inverted L shape is the unobserved part).

Note that the two parts of V and the two parts of E do not
necessarily have a corresponding relationship. Figure 1 shows
a general case with the overlap between observable nodes and
unobservable connections.

Then, our task is to infer all the unobserved information
including node dynamical rules ψ , unobserved connections
Au, and unobserved node states xt

u according to all the known
information including time series of observed nodes x0:T

o and
observed connections Ao.

B. Optimization Problem Formulation

The network inference problem can be formulated as an
optimization problem that finds a set of optimal parameters
α,β ,γ , to minimize the error value between the state estima-
tion value and the ground-truth, which is the objective func-
tion Equation 1.

min
α,β ,γ

L(α,β ,γ) =
T

∑
t=1

D
(
xt

o, x̂
t
o(α,β ,γ)

)
+λ ||Â(β )|| (1)

such that:

x̂t
o

⊕
x̂t
u = ψ̂α

(
xt−1
o

⊕
x̂t−1
u , Â(β )

)
,∀t > 1, (2)

x̂0
u = ρ(γ) (3)

Here, D(x,y) is a measure of the closeness between the
state xt

o and x̂t
o(α,β,γ), and it can be a cross-entropy mea-

sure when the states are binary or Mean Absolute Error(MAE)
when the states are real numbers. ψ̂α(·) is a dynamical rule
approximator to estimate ψ parameterized by α . Notice that,
to estimate a better state at time step t, we use the infor-
mation from real data of the observable nodes xt−1

o at step
t − 1. In this way, we can iteratively apply ψ̂α to the esti-
mated state in the previous time to obtain an estimated evo-
lutionary trajectory (x̂1, x̂2, · · ·, x̂T ) starting from the state
x̂0 = x0

o

⊕
x̂0
u. And this trajectory must be similar to the

real trajectory (x1,x2, · · ·,xT ). Further, Â(β ) is the esti-
mate of the adjacency matrix A with the parameter β . And
x̂0 = ρ(γ) ∈ RM×d is an estimate of the initial states of un-
known nodes which are parameterized by γ . The second term
in Equation 1 is the structural loss which can compel the gen-
erated adjacency matrix to be sparse, and λ > 0 is the param-
eter to balance the relative importance between the structural
loss and the prediction error.

We have converted the network inference problem into an
optimization problem, but this is a very general framework in
which concrete implementation should be given.

C. Network Inference Framework

1. Implementation Gumbel-softmax Inference for Network

To implement the framework mentioned in the previous
paragraph, we propose a concrete implementation called
Gumbel-softmax Inference for Network (GIN). GIN is com-
posed of a network generator based on gumbel softmax
technique and a dynamics learner based on graph network
technique43,47.

The Framework is shown in Figure 2. The inputs of our
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model are the states xt
o of observable nodes and the observ-

able adjacency matrix Ao. Correspondingly, the outputs are
the complete network structure and the future states of all
nodes.

At first, the candidate network is generated by a series of
gumbel softmax sampling processes parameterized by a ma-
trix βN×N , that is,

Ai j =
exp((log(βi j)+ξi j)/τ)

exp(log(βi j)+ξi j)/τ))+ exp(log(βi j)+ξ ′i j)/τ))
,

(4)
where βi j is the probability of the connection between node
i and node j, and ξi j is the i.i.d random variable of the stan-
dard Gumbel distribution, and τ is the temperature parameter.
When τ goes to zero, Ai j will converge to 0 or 1. Equation
4 simulates the sampling process of generating Ai j with the
probability ξi j, however, it is differentiable such that it can be
adjusted by the gradient descent method.

The second module of GIN is the initial state generator. Be-
cause the iteration of the dynamics leaner ψα requires the ini-
tial state of all nodes, however, the states of unobserved nodes
are missing. We generate the initial states of these unobserved
nodes with the initial state generator ρ(γ) parameterized by γ .
Here, ρ can be simply an identity function (this is equivalent
to sample initial state by γ directly) or a function to specify
the value boundary of the initial states (for example, a sig-
moid function can limit the initial states to the interval (0,1)).

Third, when the candidate network and initial state are gen-
erated, they will be fed into the dynamics leaner module. We
assume that the dynamics ψ is node symmetric, therefore, we
can use a graph network ψ̂α parameterized by α to implement
the dynamics learner as shown in Figure 3.

We train and update the parameters of the three modules
in each epoch. After the predicted states of the unobserv-
able nodes are obtained, the loss function can be calculated
by comparing the predicted states and the real ones. And we
implement the back-propagation algorithm to obtain the gra-
dient values and update the parameters of the three modules
simultaneously. We layout the pseudo-codes of GIN in Algo-
rithm 1 to show the details.

2. Graph Matching Problem in the Evaluation Process

After training the GIN framework, we need to evaluate the
effect of the network inference. However, it is difficult to eval-
uate a network completion algorithm in real life because the
missing connections are unknown. Our strategy is to find a
real network as the ground truth, cut off some of the nodes
and edges for testing, and then compare the inferred part of
the algorithm with the real network.

However, a new problem, graph matching between the in-
ferred sub-graph and the real one arises during this compar-
ison, because the unobservable nodes between the inference
and the ground truth should be aligned before evaluating.

To solve the problem, we can search for all node alignment
and find the best one. Here, the best alignment means that

Algorithm 1 : GIN algorithm
1 Input: the observed adjacency matrix Ao if have;

the time series of all or partial nodes x0:T
o ;

the number of observed nodes No if have.
the number of unobserved nodes Nu if have.

2 Output: the predict adjacency matrix Â;
the initial states of the unobserved nodes and the predict
states of all nodes x̂= {x̂0

u, x̂
1:T+1
u , x̂1:T+1

o }.
# Initialization
4 Initialize Dynamics Learner parameters α

5 Initialize Initial States Generator parameters γ

6 Initialize Network Generator parameters β (Nu)
# Training
7 for each epoch do
8 Get initial states of unobserved nodes: x̂0

u = ρ(γ)
9 Sample unobserved adjacency matrix:

Âu =Network Generator(β )
10 Â← (Ao

⊕
Âu)

11 for t=0,· · · ,T do
12 Concatenate nodal states: x̂t← (xt

o
⊕

x̂t
u)

13 for i=1,· · · ,No do
14 x̂t

o[i]
⊕

x̂t
u[i]← Dynamics Learner (Â[i], x̂0,α)

15 loss← Compute Loss ({xt
o[i]},{x̂t

o[i]})
16 update γ , β , α with the gradient of loss
17 end
18 end
19 end

each node pair in the alignment has the most similar neighbor
relationship with each known node. Thus, the graph matching
problem can be formulated as another optimization problem:

min
p∈P(Nu)

‖ A− (INo

⊕
P)Â(INo

⊕
P)T ‖

2

F
(5)

Where, A and Â represent the adjacency matrices of the
ground truth and the inference, respectively. P is a permu-
tation matrix(node alignment) with size n× n, and P(Nu) is
the set of all possible permutation matrices with size Nu. INo
is an identity matrix with size No. The symbol

⊕
represents

the concatenation of matrices. Therefore, A(INo

⊕
P)T means

the rearrangement of the rows and columns of the matrix A
with the observable part unchanged. Thus, formula 5 means
to find an optimized permutation P of the unobservable nodes
such that the adjacency matrices between the inference and
the ground truth can be as similar as possible.

However, there are Nu! possible permutations such that
finding an optimized permutation by brute force searching is
impossible. Therefore, we use Seed Graph Matching (SGM)
algorithm to solve this NP-hard problem48.

At first, the objective function in Equation 5 can be ex-
panded as:

‖ A− (INo

⊕
P)Â(INo

⊕
PT ) ‖

2

F
=

‖ A ‖2
F +‖ Â ‖2

F −2 ·Tr
(

AT (INo

⊕
P)Â(INo

⊕
PT )
) (6)

where ‖. ‖F is the Frobenius norm on matrices. Then, the
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FIG. 2. The modules of the GIN model. At first, the network structure and the initial state can be generated by the network generator and
initial state generator modules, respectively. After that, they are input into the dynamics learner to output the predicted value of the node states
at the next time step.

FIG. 3. The dynamics learner consists of four parts: (1) Node to Edge: aggregating the original information of nodes to form representations
of edges; (2) Edge to Edge: update the edge representations; (3) Edge to Node: aggregate all information on neighbouring edges of each node
to form a new feature vector of the current node; (4) node to node: update the node representations; (5) Output: finally, concatenate the node
representations and the input state vectors of node i to feed into a feedforward network, and output the prediction of the next state all nodes.

minimization problem can be further simplified to the maxi-
mization problem:

max
p∈D(Nu)

J(P) = Tr
(

AT (INo

⊕
P)Â(INo

⊕
PT )
)
. (7)

Nevertheless, this optimization problem is also hard to solve
because P is a permutation matrix with binary entries. We
then relax the problem by allowing the matrix P to be a doubly
stochastic matrix such that the value range of each entry can
be extended to the interval [0,1] as suggested by the SGM
algorithm. After that, the conjugated optimization method can
be used to optimize J(P). The details can be referred to48.
As reported by48, when the similarity of the two graphs is
more than 90% and the number of matched nodes is more
than 15, the matching accuracy of this algorithm can be more
than 90%. In our experiment, the parameters are the same as
those in48.

III. EXPERIMENTAL RESULTS

Our framework and algorithms are universal because they
can be applied to any network structure and any type of time
series data such as continuous or binary states.

A. Data Set

We test our method on both synthetic and empirical social
networks.

1. Synthetic Network

We generate synthetic networks by well-known network
models such as: ER(Erdos-Renyi network )49, WS(Small
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TABLE I. Network parameter of social network

Network Na Eb 〈k〉 c 〈C〉d 〈r〉e
Karate 34 78 4 0.5706 -0.4756

Dolphins 62 159 5 0.2589 -0.0435
Email-partial 143 623 8 0.4339 -0.01953

Dorm 217 2672 24 0.399 0.1195
Email 1133 10902 4 0.220 0.0782
Blog 1224 19025 15 0.210 -0.2200

a number of nodes
b number of edges
c average degree
d average clustering coefficient
e degree-degree correlation coefficient

world network)50 and BA(Scale-free network)51. Next, we
summarized the parameter settings for generating synthetic
networks.

- ER. In the ER model, nodes are linked to each other
with the probability p = 0.04,0.013,0.01 for the net-
works with the number of nodes as 100, 300 and 1000,
respectively.

- WS. The WS model can be used to generate locally
clustered networks. In our setting, we at first connect
4 closest neighbors on a ring, and we rewire a link ran-
domly with 0.3 probability.

- BA. The BA model can simulate the scale-free property
of real networks. The preferential attachment rule is
used to grow a BA network. At the beginning, there are
m0 = 20 nodes have been existed as the seeds. Then,
a new node is added which will connect k = 2 existing
nodes with preferential attachment rule.

2. Empirical Social Networks

We also select 6 real social networks with different struc-
tures as the representatives of the empirical networks. Except
for Dorm, the connections of these networks are undirected,
which means that the transmission of information between
nodes is mutual rather than one-way.

The basic structural parameters of the three social networks
are shown in Table I

B. Time Series Data of Network Dynamics

A large number of time series data is required to implement
our approach, however, it is hard to obtain from the real sce-
nario because the problems of privacy and measurement are
concerned. Therefore, we use synthetic time series data gen-
erated from the network dynamics instead of real data. Two
different types of time series data (binary and real-valued) are
tested because both types can be processed by our approach.

The first type of time series is binary which simulates the
process of opinion spreading on a social network. We use the

well known Voter model to simulate the opinion dynamic on
network. The Voter model is introduced by Richard A. Hol-
ley and Thomas M. Liggett in 197552,53. Suppose there are
N interacting agents connected to form a network. Initially,
each agent has a distinct “opinion” represented by xt

i = {0,1}.
At each time t, any agent i will have a chance to change his
”opinion”, and the probability to adopt the opinion is deter-
mined by the relative fraction of the same opinion in all of i’s
neighbors.

The second type of dynamics on the social network has
real-valued state. This models the cases that the psycholog-
ical states of different people (e.g., the expectation price of
a stock or a commodity) can influence each other via social
connections.

We choose the chaotic network dynamic Coupled Mapping
Network (CMN) as our candidate to generate the time series.
A Coupled map network (CMN) model is a network dynamic
with discrete time and continuous state which is proposed by
Kaneko in 199254. Each element on a network consists of a
logistic map coupled to their neighbors, this can be written as

xt+1
i = (1− ε) f (xt

i)+
ε

|Ni| ∑
j∈Ni

f (xt
j) (8)

where xt
i ∈ [0,1] is the state of node i at time t, Ni represents

node i’s neighbors, ε ∈ (0,+∞) is the coupling constant which
can tune the system behavior, and the local map f (x) is the
logistic map:

f (x) = x(1− x). (9)

In our experiments, we set ε = 3.5

C. Data Preparation

We have evolved discrete Voter dynamics on the synthetic
network and real social networks, and continuous CMN dy-
namics on synthetic networks. In order to generate time se-
ries data for each node, we first generate s initial states for
each node. In each initial state, we evolve T time steps for-
ward through the dynamic function. In the process of model
training, t time-step state information is used. The number
of training data we derived from the dynamics of CMN is
S = s× T/t , the number of data evolving from the Voter
dynamics is S = (T − t + 1)× s. In all experiments, we set
t = 2. The T values of CMN and Voter dynamics are 100 and
51, respectively. On networks of different sizes and tasks, we
generate different size data sets by adjusting s.

On network completion tasks, including part of the network
structure is known and no network structure, we set s to 50 in a
synthetic network of 100 nodes, and generated 2.5k data sets
with a time step of 2, and in 300 nodes set s to 400 on the
synthetic network and generate 20k data sets based on CMN
dynamics. For Voter dynamics, we generated 5k and 15k vol-
ume data sets with steps of 100 and 300 on the synthesized
network of 100 nodes and 300 nodes, respectively. In partic-
ular, we used 15K of data on a 100-node ER network. On the
karate, Dolphin, and Email networks, s is 20, 200, and 300,
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and 1k, 10k, and 15k data set are generated respectively. The
division ratio of the training set, test set and validation set is
5:1:1.

For the network reconstruction task, on the continuous data
set generated on the CMN dynamics, we generate 12k, 10k
and 60K data on 10,100 and 1000 nodes of the WS network
respectively. The ratio of the training set, test set and verifica-
tion set is 10:1:1. We set the value at 10 and 100 respectively.
12k, 10k, and 60k data are generated on the WS network of
1000 nodes. The division ratio of training set, test set and ver-
ification set is 10:1:1. For Voter dynamics, the division ratio
of the data set is 5:1:1. The s values of the WS network with
10, 100, and 1000 nodes are 400, 200, and 2000, and the data
volume is 20k, 10k, and 100k. On the real network Dorm,
Blog s is 1200, 3200, data volume is 60k, 160k respectively.

In appendix, we summarize the amount of experimental
data. For each experiment, we repeat three times and then
calculate the average value to report.

D. Experimental Setup

To implement the experiments, several representative tasks
are set. The parameters in different situations are also given
in this subsection.

1. Tasks

Our framework GIN can be applied to any case with or
without observable nodes and partial networks. Without lose
of generality, three specific tasks are designed as follows:

- Network Completion with Partial Structural Infor-
mation: In this task, we randomly select a fraction of
nodes as unobservable nodes, and we remove the cor-
responding time series and the corresponding entries of
the adjacency matrix (all connections related to the un-
observable nodes). And the incomplete data is fed on
the framework to ask GIN to infer the unknown adja-
cency matrix and the unobservable initial node states.

- Network Completion without Structural Informa-
tion: In this task, we need to randomly select some
nodes as unobservable, and remove the corresponding
time series to feed into GIN. Nevertheless, different
from the previous task, the partial network is never
known for the framework.

- Network Reconstruction: In this task, we need to re-
construct all links from the observed time series, and all
nodes are observable.

2. Parameter Settings

To achieve good results in the tasks mentioned, we need to
set up the parameters in GIN.

In general, we set parameters in all experiments as follows:

(1) In the dynamics learner module, we use a 4-layered
MLP as a node shared function as shown in Figure 3. The
activation function of each layer is ReLU. The model param-
eter α is randomly initialized. We use 32 hidden units in each
layer in most cases. However, it is 64 on the Voter model.

(2) In the initial state learning module of the network com-
pletion task, discrete and continuous datasets have different
initial state generation methods. The nodes’ states are usually
coded by one-hot vectors on the data set generated by Voter.
For the data sets of CMN, We use sigmoid as the function ρ

to map the parameters γ into the interval [0,1]
(3) In the network generator module, because the adjacency

matrix constructed is symmetric, we just randomly generate
N(N− 1)/2 elements of the upper triangular part of the ad-
jacency matrix via the gumbel-softmax sampling process pa-
rameterized by β which are sampled by a normal distribution
N(0,0.1), and we add up the transposed triangular matrix to
obtain a complete symmetric adjacency matrix. For exam-
ple, in Karate Network, we generate only 33 * 17 parameters,
which is the number of triangular elements on the adjacency
matrix except for diagonals.

The above three modules are optimized by using Adam op-
timizer, the learning rates of (1) to (3) module are set to 0.004,
0.1, and 0.001, respectively. The learning rate of the state
leaner is higher than that of the other two modules. This is
because states have too many parameters, and it is easy to
fall into local optimums. For each epoch, we randomly select
1,024 samples to train and can have better results after training
about 500 epochs.

The structural loss parameter λ is set to be zero in all
tasks except the network reconstruction task which is set to
be 0.0001.

3. Performance on Network Completion with Partial
Structural Information

First, we test the performance of GIN on the network com-
pletion task with partial structural information. According to
our investigation so far, we do not find a method that can be
applied directly to solve the network completion task based on
time series data, thus, we do not compare it to other models.
We carry out the experiment of the GIN model on network
completion on 100-scale and 300-scale networks, where the
percents of missing nodes are 10.

In table II, the first numbers in the N-Nu column repre-
sent the total network size, and the second numbers are the
numbers of nodes being removed. For example, 100-10 in-
dicates that we remove 10 nodes from a whole network with
100 nodes. The indicator of unobs-AUC refers to the Area
Under the ROC Curve of the prediction for the unobservable
part of the network. Also, we display some details about the
results, such as the unobs-ACC(net) which is the proportion
of elements that correctly estimated adjacency matrix Â, and
the values of the True Positive Rate (TPR), False Positive Rate
(FPR) of the unobservable part. The obs-ACC/MSE (states) is
the accuracy of the predicted future states of observed nodes
for the binary dynamic (Voter), and it is the mean square error
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TABLE II. Network Completion Performance on different networks and dynamics

Dynamics N−Nu Network Unobs-AUC Unobs-ACC(net) Unobs-TPR Unobs-FPR Obs-ACC/MSE

Binary

100-10
ER 0.8355±0.103 0.8933±0.0152 0.6241 0.1002 81.01%
WS 0.9218±0.005 0.8333±0.006 0.8869 0.1691 82.07%
BA 0.9233±0.006 0.8133±0.023 0.8993 0.1844 82.19%

300-20
ER 0.9550±0.009 0.9600±0.000 0.6385 0.0387 77.29%
WS 0.9583±0.005 0.9400±0.006 0.7672 0.0539 79.33%
BA 0.9387±0.004 0.9567±0.006 0.6054 0.0397 79.31%

34-3 Karate 0.8241±0.05 0.6800±0.144 0.7847 0.4042 87.93%
62-6 Dolphins 0.8742±0.011 0.7900±0.010 0.8366 0.2157 83.50%

143-14 Email-partial 0.7915±0.010 0.8550±0.007 0.4964 0.1238 76.52%

Continuous

100-10
ER 0.9839±0.008 0.9500±0.008 0.8723 0.0441 8.03E-06
WS 0.9463±0.032 0.9033±0.052 0.8509 0.1185 9.68E-06
BA 0.9282±0.003 0.9333±0.0205 0.8282 0.0580 7.99E-06

300-20
ER 0.9902±0.008 0.9533±0.023 0.9579 0.0464 1.42E-06
WS 0.9463±0.082 0.9033±0.137 0.8509 0.1185 9.68E-06
BA 0.9286±0.017 0.9467±0.032 0.8259 0.0487 4.13E-06

for the continuous dynamic (CMN).
GIN can perform well on both tasks of network inference

and observed node states prediction. The accuracy of the state
of observable recovery is over 77% for the binary data set.
And the relative error rate is close to 0 in the continuous data
sets. Besides, our model maintains a stable accuracy on dif-
ferent network structures. Table II demonstrates that the ac-
curacy of the binary data set is lower than that of the CMN
data sets especially on the FPR results and also has a larger
deviation of the dynamic state prediction value. It can be ex-
plained by the fact that the information propagation process of
the Voter dynamic is stochastic, however, the CMN dynamic
is deterministic.

We show a heat map Figure 4 comparing the inferred adja-
cency matrix graph with the real adjacency matrix to describe
the effect of our completion more clearly. We set a reasonable
threshold to turn the inferred probability adjacency matrix into
an adjacency matrix that is either zero or one, then stack it on
top of ground truth and the following heat map is plotted fi-
nally. Both the brown and yellow boxes in the figure represent
the observed local network structure and the remaining invert
"L" shape is the unobservable part in which the green and
red squares represent elements that are incorrectly inferred.
On the Dolphin network, red and green elements account for
about 20%, and on the Karate network, the proportion of red
and green elements is about 24%. Notice that, all correctly
labeled matrix units are concentrated in the same row or col-
umn, which shows that our GIN algorithm can infer that some
observed nodes have some connections with some unobserv-
able nodes. However, it is hard to know which unobservable
nodes are.

We also do experiments on three empirical social networks,
where the percent of missing nodes is set to be 10%. Table
II includes the metrics to evaluate the structural accuracy and
the state recovery accuracy. GIN achieves over 80% accu-
racy, which is less than in the synthetic network. One of the
possible reasons is that the real social network is denser than
the synthetic network, which increases the uncertainty of state
transition compared to a sparse network. Our model obtains

about 80% accuracy in extrapolating the state values, which
means that our model learned the dynamics of the nodes from
discrete dynamics. Both in the inference of missing structure
and known nodes’ states, our model has achieved high infer-
ence accuracy on the empirical social network.

Generally speaking, inference accuracy should decrease
with the increase of the proportion of unobservable nodes in
the network completion problem. Thus, we investigate how
fast the accuracy decrease with the missing proportion in-
crease from 10% to 90%. Figure 5 shows the effect of the
accuracy of network inference on the proportion of observed
nodes. It can be seen that the AUC value decreases in a lin-
early way approximately. That means, each time the percent-
age of observed nodes increases by 10%, the AUC decreases
by 0.05.

Through the above experiments, we found that GIN can in-
fer network structure information with a higher accuracy rate.
In addition, the effect of the inference is affected by the ob-
served information. When the ratio of the observed informa-
tion is less than 50%, it is difficult to infer the complete dy-
namic system accurately.

4. Network Completion without structural information

In the previous task, partial network structures can be
known. However, in some real cases, we can only know the
time series of the observed nodes. Therefore, we test the task
of network completion without structural information in this
experiment. To finish this task, we first use GIN to reconstruct
the observable nodes and then make the completion of the
whole network according to the reconstructed network. We
outline our results by comparing the network completion task
with or without network structure between observed nodes in
Figure 6. It can be seen that the performance of task 2 is sig-
nificantly better than that of task 1. However, the performance
of task 1 is also very good, and the AUC is above 80%.

Further, we show the AUCs of network inference for differ-
ent parts as shown in Table III. It can be seen that on different
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FIG. 4. Contrast matrices of the adjacency matrices between the inference and the ground truth for Dolphin network (a), and the Karate
network (b). The invert L-shaped part in the figure has four colors, among which blue is the True Positive element, purple is the True Negative
element, green is False True element, and red is the False Negative element.

FIG. 5. AUC of unobservable network decreases with the proportion
of observed nodes.

social networks, the AUC of the whole network has reached
above 0.9. While, the AUCs of the unobservable part are 0.6,
0.6, and 0.8 on Karate, Email, and Dolphin networks, respec-
tively. Reconstruction AUC represents the accuracy of the
network reconstruction task for the links between observable
nodes. We also compare the inferred network and the ground
truth on a set of representative statistical indicators, and the
results are similar as shown in the table IV.

In summary, our framework can also perform certain com-
pletion work when structural information is missing.

5. Network Reconstruction

On the task of network reconstruction, we compare with
the state-of-the-art methods such as neural relational inference

FIG. 6. Comparison of the performance of GIN under the network
completion task with (1) or without (2) network structure informa-
tion.

model (NRI)42. and the algorithm for revealing network in-
teractions (ARNI)55. In addition, we also compared with two
traditional methods, namely mutual information method56 and
partial correlation method57.

- NRI(Neural Relational Inference Model) applies a vari-
ational auto-encoder method to learn the underlying in-
teraction graph and the complex system dynamics from
the observational dynamical data. We ran the NRI
Model by using the settings which are consistent with
the original paper in42.

- ARNI(Algorithm for Revealing Network Interactions)
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TABLE III. Network completion without structural information

Dynamics Network Nodes-Missing nodes Missing AUC Reconstruction AUC All AUC

Discrete

Karate 34-3 0.7602 0.9930 0.9524
Dolphins 62-6 0.8237 0.9989 0.9766

Email-partial 143-14 0.5899 0.9819 0.9231
ER 100-10 0.8923 0.9908 0.9850
WS 100-10 0.8622 0.9883 0.9957
BA 100-10 0.9189 0.9956 0.9875

Binary
ER 100-10 0.8585 0.9931 0.9717
WS 100-10 0.8979 0.9943 0.9808
BA 100-10 0.8863 0.9795 0.9776

TABLE IV. Comparison of the statistical properties for Dolphin net-
work

Statistical characteristics GIN Real
Average Degree 5.067 5.129
Graph Distance 3.26 3.357
Graph Density 0.086 0.084

Clustering Coefficient 0.294 0.303

is a state-of-the-art method of network reconstruction
task by regressing the gradient information of node state
with the state in the previous time step55.

- Pcorr & MI (Partial Correlation & Mutual Informa-
tion) are all measures of correlation between node
states. Partial correlation refers to the process of re-
moving the influence of the third variable when two
variables are simultaneously related to the third variable
and only analyzing the degree of correlation between
the other two variables. Mutual information (MI) is an
information theoretic measure of the correlation of two
variables. On network reconstruction, the two methods
can be used to measure the similarity between the time
series of two nodes. The less the similarity, the greater
the probability that the two nodes connect.

In Table V, we show the performances of our model on the
network reconstruction task. AUCs of GIN can reach above
99% on WS small world networks with different sizes. How-
ever, ARNI and NRI models can work on small networks with
continuous dynamics. Our Framework can also handle large
networks with more than a thousand of nodes while maintain-
ing performance.

6. Utility analysis of seed graph matching algorithm

In order to analyze the effectiveness of our proposed eval-
uation algorithm, we conducted ablation experiments on the
existing model by deleting the seed graph matching algorithm
module, and the inferred adjacency matrix is directly com-
pared with the real adjacency matrix. In addition, we also
show the accuracy of matching by SGM between a randomly
generated adjacency matrix and the real adjacency matrix.

20 50 100 200
Number of nodes
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FIG. 7. The running time of GIN increases with the network size and
the number of missing nodes.

We conducted experiments on a synthetic network with 100
nodes. The specific results are shown in tableVI. The column
"AUC (GIN without SGM)" shows the AUC value inferred
from the adjacency matrix of the missing network structure
without the Seeded Graph Matching module (Seeded Graph
Matching, referred to as SGM), and uses SGM to match the
randomly generated adjacency matrix. It is clear that GIN
with SGM can get highest value of AUC on network comple-
tion. The result reflects the Network Completion -The opti-
mal effect can be achieved only when GGN is coupled with
the SGM evaluation algorithm, which shows the effectiveness
of the SGM algorithm.

7. Computational complexity analysis

Training the the neural network requires time, and the time
complexity increases with network size. To test how the time
complexity depends on network size, we conduct experiments
on a GPU of Tesla V100(16G) on WS small-world networks
with 20,50,100, 200,300 nodes. And on the networks, 10% of
nodes are unknown.

Fig 7 shows the curve of time complexity. Training the
model requires an hour when the network size is not exceed
200. However, the time complexity increases dramatically on
a network with 300 nodes due to the increase of the require-
ment on time series data, and it takes almost five hours.
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TABLE V. Network reconstruction performance on different networks and dynamics

Dynamics Nodes GIN MI PCorr ARNI NRI
AUC ACC/MSE AUC AUC AUC ACC/MSE AUC ACC/MSE

Binary

WS-10 1 0.9463 0.525 - - - 0.5037 0.9062
WS-100 0.9961 0.7914 0.508 - - - - -

WS-1000 0.9996 0.6623 0.547 - - - - -
Dorm-217 0.6918 0.9999 0.5219 - - - - -
Blog-1224 0.6366 0.9715 0.4995 - - - - -

Discrete WS-10 1 3.31E-04 0.6875 0.785 1 2.35E-09 0.9997 8.40E-08
WS-100 0.9987 1.48E-06 0.571 0.613 - - - -

WS-1000 0.9995 2.92E-06 0.567 - - - - -

TABLE VI. Comparison table of the effect of SGM algorithm module in GIN model

Network AUC GIN with SGM AUC GIN without SGM Random AUC with SGM
ER(100-10) 0.9839±0.008 0.7662±0.062 0.6323±0.004
BA (100-10) 0.9463±0.032 0.8540±0.019 0.6885±0.008
WS(100-10) 0.9282±0.025 0.6268±0.024 0.6519±0.011

IV. DISCUSSION

In the paper, we discuss the problem of network inference
with few unobservable nodes, and we propose a universal
framework to solve the problem. First, we formulate the net-
work inference problem based on time series data under an op-
timization framework. Second, we design GIN model by inte-
grating three modules: a Gumbel-softmax based network gen-
erator, a graph network based dynamics leaner, and an initial
state generator. Third, we apply GIN on two vastly different
types of time series data. We then reported the performances
of GIN framework on three different network inference tasks,
and GIN can work while on both network inference and initial
state inference.

The benefits of our framework include its lightweight de-
sign, high accuracy, and universality to different network
structures and dynamics. By using the Gumbel-softmax based
network generator and the initial state generator, we can sim-
ply set the unknown elements to be learnable parameters, the
design can be generalized in more cases. We test our frame-
work on three different kinds of network inference tasks, and
it can achieve relatively good results on all the tasks. And the
results are robust and universal for different network struc-
tures and dynamics.

However, there are still many aspects that can be improved
in our current work. For example, our model have a high accu-
racy in networks where the missing percent is less than 10%.
With the missing percent increase, the number of unobserved
nodes that have more than one degree of separation from an
observed node will increases significantly which results in a
major loss in the performance of the GIN model. The per-
formance of the initial state generator can be improved on a
larger space of node state. Besides, the amount of data needed
for network inference is relatively large, the reduction for data
requirement should be solved in the future. Furthermore, we
hope that the accuracy of network completion can be further
improved by increasing the performance of the initial state

generator.
In future works, we hope to combine the information of

node states information and network structural information to
infer unknown network structures. The dynamics learner also
can be generalized to non-Markovian dynamical processes.
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APPENDICES

A. Data number on different task

As shown in table VII, we summarize the details about ex-
perimental data.

B. Convergence of the algorithm

Figure 8 shows the convergence scale with increasing net-
work sizes. As the size of nodes increases, loss (MAE) is
always maintained at a relatively stable level, which proves
that the GIN algorithm has good convergence.
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TABLE VII. Data on different task

Task dynamics Network Number of initial states s Number of datasets S

Network Completion Task

CMN 100-node synthetic 50 2.5k
300-node synthetic 400 20k

Voter

100-node WS/BA 100 5k
100-node ER 300 15k

300-node synthetic 300 15k
Karate 20 1k

Dolphin 200 10k
Email-partial 300 15k

Network Reconstruction Task

CMN
10-node 240 12k

100-node 200 10k
1000-node 1200 60k

Voter

10-node 400 20k
100-node 200 10k
1000-node 2000 100k

Dorm 1200 60k
Blog 3200 160k
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FIG. 8. The convergence scale with increasing network size. As the
training epoch increased, loss(MAE) with logarithm shows a clear
downward trend. At different node scales, the models converge as
the training epoch increased.
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