International Review of Financial Analysis 64 (2019) 13-21

journal homepage: www.elsevier.com/locate/irfa

Contents lists available at ScienceDirect

International Review of Financial Analysis

International
Review of
Financial

Analysis

Stock index pegging and extreme markets

Xinyue Dong, Rong Ma, Honggang Li*

Check for
updates

School of Systems Science, Beijing Normal University, China, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, PR China

ARTICLE INFO ABSTRACT

Keywords:

Stock index
Market stress
Extreme market
Synchronize
Positive feedback

In this paper, we design a multi-agent model to explore endogenous mechanisms that create extremes in stock
markets. This study will show that when making trading decisions, if the changing trends of a stock index are
taken into consideration, several stylized facts, including synchronized behavior, increased downside correla-
tions and the leverage effect, are reproducible in the model. If reversed, these facts prove the reliability of our
assumption of the microscopic mechanism in the model. We finally conclude that a market drop causes syn-

chronized behavior and further market drops. In other words, the stock index not only represents and describes a
general market assessment but can also affect market sentiment and change future market trends.

1. Introduction

An extreme market is not an uncommon phenomenon in the world's
stock market history. The “Black Monday” event that occurred on
October 19, 1987 (Carlson, 2006) and the “Flash Crash” event on May
6, 2010 (CFTC and SEC, 2010) are two typical examples. Obviously, an
extreme market has a very large impact on a stock market and may
result in substantial losses to investors. Therefore, exploring ways to
prevent, or at least reduce, such market collapses is crucial for financial
risk management; a good starting point is studying extreme market
mechanisms.

Traditional economic and financial theories provide insufficient
explanations for the sudden and systematic collapse of a financial
system. The efficient market hypothesis holds that price collapses are
caused by specific exogenous shocks, but previous studies have shown
that stock price crashes are not usually explained by negative shocks or
changes in market fundamentals. For example, Cutler, Poterba, and
Summers (1989) tried to analyze the effect of macroeconomic data and
major news events on market returns after the stock market crash in
1987 and found that neither could explain the change in returns. They
finally concluded that extreme price changes were not caused by fun-
damental shocks. Siegel (1992) attempted to use standard valuation
models to explain the 1987 market crash but they found that predic-
tions of corporate value could not explain the phenomenon of stock
prices suffering a sharp drop after rising steeply in 1987. Because ex-
ternal factors cannot satisfactorily explain these extreme financial
market events, many researchers abandoned exogenous explanations
and turned to endogenous causes (Jacklin, Kleidon, & Pfeiderer, 1992;
Madhavan, 2012; Roll, 1988).
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Some scholars believe that certain trading strategies or mechanisms
are responsible for extreme markets. Shiller (1988) thought that port-
folio insurance strategies were an important factor leading to the 1987
stock market disaster. Ben-David, Franzoni, and Moussawi (2014)
found that ETF arbitrage strategies could increase market volatility and
make asset prices deviate significantly from their fundamental values
when price shocks occurred. Torii, [zumi, and Yamada (2015) con-
structed a multi-asset artificial stock market and found that arbitrage
traders could make market shocks pass between different assets, and
some regulatory rules, such as circuit breakers, could exacerbate market
volatility in some cases.

Other scholars have explained extreme markets from a behavioral
finance perspective. Lee, Jiang, and Indro (2002) found that excess
returns were contemporaneously positively correlated with shifts in
sentiment. Moreover, the magnitude of bullish changes in sentiment led
to downward revisions in volatility and higher future returns. Lux
(1995) applied the nonlinear dynamic method to study the impact of
herd behavior, which indicated that herd behavior could lead to market
bubbles and market crashes. Bikhchandani and Sharma (2000) also
pointed out that herd behavior could lead to a decline in stability and
an increase in the vulnerability of financial markets, resulting in ex-
cessive market volatility.

In the process of studying the causes of extreme markets, some
scholars uncovered some of the common characteristics of crashes.
First, heterogeneous trading behavior tended to converge, and ask or-
ders were overwhelming (Blume, MacKinlay, & Terker, 1989). This
behavioral consensus causes a stock price to drop or even creates “li-
quidity black holes” (Morris & Shin, 2004). In fact, a severe mismatch in
liquidity is regarded as the source of crashes (Borkovec, Domowitz,
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Serbin, & Yegerman, 2010; Brunnermeier, Gorton, & Krishnamurthy,
2013). Second, individual stocks have stronger correlations in a
downside market when compared to those in normal conditions
(Campbell, Koedijk, & Kofman, 2002; Estrada, 2000; Solnik, Boucrelle,
& Le Fur, 1996). Lastly, negative returns further increase future vola-
tility, which is called the leverage effect (Bouchaud, Matacz, & Potters,
2001; Figlewski & Wang, 2000; Yook, 2003).

From our point of view, an extreme market is just a self-organizing
phenomenon of a multi-agent system. In the market, traders make
trading decisions based on the market quotation index (In fact, many
intraday technical traders, even some fundamental traders, keep an eye
on stock quotations especially when the prices drop considerably.).
Traders' behaviors are coupled with this “index pegging”, leading to a
self-organized market pattern of collective behavior (Ma, Zhang, & Li,
2017). Indeed, Shiller created questionnaire surveys to study investors'
behavior during the 1987 crash and found that investors reacted to the
market drop itself rather than any other specific news (Shiller, 1989).

In this paper, we explore the endogenous mechanisms of an extreme
market (Giardina & Bouchaud, 2003) by using agent-based modeling,
which is an effective method for studying financial market phenomena
and exploring micro-market structures (Amman, Tesfatsion, Kendrick,
Judd, & Rust, 1996; LeBaron, 2006; Tesfatsion, 2002). In previous
studies, we found that when traders depend strongly on the stock index,
the behavioral consensus of traders is higher, the consistency of stock
movements is higher, the market's volatility is higher, and the market's
liquidity is weaker (Ma et al., 2017). We not only tried to reproduce
conditions of the crash but also explored extreme market related me-
chanism stylized facts such as synchronized behavior, increased
downside correlations and the leverage effect. We designed the deci-
sion-making mechanism that traders would consider with index fluc-
tuations and the degree that traders refer to the index. Trader's reliance
on the index strengthened in a highly volatile market. With this me-
chanism, the traders' behavior was expected to synchronize sponta-
neously when the market falls sharply. In our model, the order price is
affected by expectations, and the effect is more severe in a downside
market.

This paper is organized as follows: We present the model in Section
2. In Section 3, we put forward measurement indexes for expressing
stylized facts. Section 4 presents the simulation results of our model.
Section 5 supplements a sensitivity analysis with some important
parameters. Section 6 performs the empirical analysis and Section 7
concludes.

2. Model design

We use a multi-agent model with a multi-asset continuous double
auction market to simulate stock transactions. The following are some
of the basic assumptions:

(1) There exist M kinds of stocks in the market, and we define a stock
index weighted by the market value of the stocks.

(2) There are N traders in the market, and each of them trades only one
kind of stock. To simplify the simulation, we exclude the influence
of asset portfolios. In fact, our model does not involve the hetero-
geneous risk-return characteristics of various stocks, so even con-
sidering the portfolio of assets as equally weighted does not have a
qualitative impact on the conclusion of our model. Therefore, we
randomly choose one kind of stock for each agent to trade during
the model's initialization period and it remains fixed throughout the
simulation process.

Margin-buying or short-selling is not permitted. Although short-
selling and margin-buying does have a significant impact on market
volatility, this effect can be isolated to be studied in another par-
ticular model (Zhang & Li, 2013; Zhou & Li, 2017). Therefore, for
simplicity, our model does not consider short-selling or margin-
buying.
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(4) Each agent has only one chance to submit a limit order in each
trading day. This simplification is also for modeling convenience. In
fact, our trading “day” here does not necessarily correspond to a
real trading day. If we map this model's trading day to a more
realistic shorter time interval, this assumption more closely aligns
to the actual market. Unsettled orders are canceled when the
trading day is closed. However, emptying orders at the end of a
trading day does not mean that traders must close their position on
the same day.

Some assumptions in our model seem to be inconsistent with the
real stock market, but these assumptions are intended to simplify the
design of the model (Chiarella, He, & Pellizzari, 2012) and have little
impact on the qualitative conclusions.

On a typical trading day ¢ (t = 1, 2, ..., T), the transaction system
would randomly determine the trading sequence. Agents submit orders
in turns according to a determined sequence. The trade direction of
agent i is chosen by the following function:

zi(z;t) = bv(z;t) + (1 — D)y (7 1) (€D

where a positive z;(z;t) results in a bid order, and a negative z{(z;t)
corresponds to a ask order. If z(z;t)=0, agent i does not submit any
order on day t. The variable v(z;t) € {-1,0,1} represents the short-term
ups and downs of the stock index (market quotation) within a trading
day, and the variable v;(z;t) € {—1,0,1} is determined by random fac-
tors, which are associated with all the other information except the
index and is heterogeneous for different agents. The parameter b de-
notes the index-dependent strength; that is, how much the traders refer
to index changing trends when making trading decisions.

Note that we record both tick data and isochronous data. Tick data
is only updated when a new transaction happens, whereas isochronous
data is recorded at regular time intervals, similar to the high frequency
data recorded at 1 min intervals in a real stock market. Each agent takes
turns to submit an order, and if a deal is reached, the trading system
outputs new tick data that contains the deal price, transaction volume
and the latest index. We produce a new isochronous data record after a
fixed number of traders A have made a trading decision. The data in-
cludes the latest price of each stock, the latest stock index and the total
transaction volume during the period. In fact, if there is only one stock,
we do not need to distinguish between these two data time horizons.
However, in a multi-asset model, it is easier for us to handle the index
pegging process.

We use isochronous data to judge market trends. Similar to the real
market, we simply know that the tick data is only recorded by the
transaction system but is unknown to the traders. v(z;t) is calculated as
follows:

v(t;t) = sgn(L(z;t) — L(t — 1;¢)) 2)

where L(z;t) denotes the rth stock index of day t, L(zr — 1;t) denotes the
(r — Dth stock index of day ¢, and sgn denotes the sign function. If the
market was up in the last time interval, then v(z;t) = 1; if the market
was down in the last time interval, then v(z;t) = — 1; if the market was
at a fixed state in the last time period, then v(z;t) = 0. Furthermore,
vi(z; t) gets its value by a random sampling from the set {—1,0,1}. The
parameter b is assumed to be valued as follows:
L(z;t) — L(t — 1;t)

b= |tanh|h x ———————= ||

L(z— 10 3

where h denotes an adjustment parameter. The hyperbolic tangent
function can limit b to the range [0, 1]. As compared to the previous
study (Ma et al., 2017) in which parameter b is fixed in the simulation,
the traders in this model will adjust parameter b according to the latest
market information in the transaction process. In fact, the formula (3) is
based on three simple ideas; first, a greater (weaker) index change rate
leads to a larger (smaller) b, which means if the market quotation
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changes substantially, then traders will care about the index more;
second, if the index return rate is large enough, then b is approximate to
1, that is to say the traders totally depend on the index when making
decisions; lastly, if the index return rate is close to 0, then b is ap-
proximate to 0, meaning that traders make decisions according to other
information. The submitted limit price is determined as follows:

p(®) = p(m;)A + 8y + Mz (z;0)) )

() = p(m: DA + 8n, + hozi(131)) 5)

where p,(t) denotes the submitted limit price of agent i on day tif it is a
bid order, p,/(t) denotes the submitted limit price of agent i on day t if it
is an ask order. The parameter § represents the standard deviation of
the price adjustment. p(z;t) is the latest price (based on the isochronous
data) that stock agent i trades on day t. 5;~N(0,1), 72~N(0,1), denote
the stochastic fluctuations of the price adjustment. Moreover, h; and h,
represent the adjustment parameters associated with the expectation.
The quantity of the submitted order is determined as follows:

Qi) € {1,2,..[CI()/pi (D) 1} 6)

Qi € (1,2,..,Q'(t) %)

where Q,'(t) denotes the quantity submitted by agent i on day tif it is a
bid order; Q.'(t) denotes the submitted limit price of agent i on day t if it
is an ask order. Qi(t) denotes the quantity of stocks agent i owns on day
t; C'(6) denotes the quantity of cash agent i owns on day t.

If an agent submits an order, the order will be sorted by a price and
time priority principle. Next, the trading system will match the orders
instantly using double auction rules until the orders on the order book
cannot be traded anymore, and the latest transaction price, index and
agents' asset accounts will be updated. Then, the next agent will submit
an order, and the transactions continue as previously processed.

3. Measurements and stylized facts

As we discussed in the Introduction, we focused on reproducing
some stylized facts from the financial market, including synchronized
behavior, increased downside correlations and the leverage effect. We
required some initial measurements so we used a normalized index
return to measure market quotations. The indicator was calculated as
follows:

Mz

2 Qp; (k)
L(k) = Ly,

Z ijjo
j=1

(8)

where L(k) denotes the kth sample of the isochronous stock index,
which was calculated using the current market capitalization and an
initial market capitalization. Q; and pj, denote the total quantity and
initial price of stock j, respectively. pj(k) denotes the kth observation
price of stock j, and Ly denotes the initial stock index.

r(k, Ak) = In(L (k + Ak)) — In(L(k)) ©)
1 K-Ak 1 K—Ak 2
= 2 -
o (Ak) = || k; (k. Ak = | - Z;l . (k, Ak) 10
1 K-Ak
r(k, Ak) — -~ % ri(k, Ak)
R(k, Ak) = =

r(k, Ak) denotes the log of the index return in a Ak period from the
kth sample of isochronous observations to the (k+ Ak)th observation
(see in Table 1). 0;(Ak) denotes the standard deviation of the index
return. K denotes the total number of isochronous data in all trading
days. Therefore, k is not only a concept of number sequences but also a
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Table 1
The data used to calculate return (within the thick border).

...... Sample k Sample k + Ak
Stock 1 p1(k) pik + Ak)
Stock 2 p2(k) palk + Ak)
Stock M-1 Pr—1K) Pm—1(k + Ak)
Stock M pmk) puk + Ak)

concept of time. R(k,Ak) denotes the normalized index return in a Ak
period from the kth sample of an isochronous observation to the (k
+ Ak)th observation.

In the following section, we provide specific explanations for the
stylized facts.

3.1. Synchronized behavior

Synchronization is mostly used to describe the stock market co-
movements (contagion) among different countries or markets, espe-
cially during a financial crisis (Lehkonen, 2015; Yang, 2005). In this
paper, we use synchronized behavior to describe synchronizing on the
same side of the limit order book (Amihud, Mendelson, & Wood, 1990).
That is, heterogeneous trading behavior tends to be homogeneous and
most traders submit sell orders during a crash. In this study, we want to
prove that synchronous behavior is the origin of a market crash, and
synchronous behavior is a result of increased concern about the index in
a downside market.

In our model, we design an indicator to describe the synchroniza-
tion of the types of agents' orders from period k to k+ Ak, that is the
degree of behavioral consensus, D(k,Ak). The calculation is as follows:

Dk, Ak) = Ne - N
N, + N_ 12)
D(k,Ak) = |D (k, Ak)| (13)

where N, (N_) denotes the number of traders submitting buy (sell)
orders in the time interval k to k+Ak. If the number of traders sub-
mitting sell and buy orders are the same in the interval, then D(k,Ak)
equals 0; If the number of traders submitting one kind of order is
greater than the number of traders submitting another kind of order,
then D(k,Ak) is > 0; if all traders submit the same kind of order in the
period, then D(k,Ak) equals to 1. In addition, if we want to figure out
tlle precise side of the synchronized behavioz, we can keep track of
D (k, Ak). If sell side orders are dominant, thenD (k, Ak) < 0; If buy side
orders are dominant, thenD (k, Ak) > 0.

3.2. Increased downside correlation

An increased downside correlation means the stock correlation is
state-dependent, which means a larger market quotation change rate
would cause an increased stock correlation and this would be more
significant in a downside market. Preis, Kenett, Stanley, et al. (2012)
conclude that the average correlation among stocks scales linearly with
market stress as reflected by normalized index returns on various time
scales. The indicator we use to describe this is the correlation of stock
returns. Based on the hypothesis that the agent's trades are equally
spaced we obtain isochronous data. We serialize the different intraday
data and calculate the stock correlation matrix at different time inter-
vals. We can then get the average correlation p. The formula is as fol-
lows:

e 1
Pl ak) = MM - 1)

M
Z Pij
o (14)

where p; denotes the Pearson correlation coefficient of the returns of
stock i and stock j in the time interval. The stock return is a log-return,
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calculated as follows:

ne=1Inp, —Inp,_, (15)

where ri denotes the return and py denotes the kth sample value of the
stock price or the stock index.

3.3. Leverage effect

A leverage effect means there is a negative correlation between past
returns and future volatility. Empirical studies have revealed that this
negative correlation decreases over time and can be described by an
exponential function (Christie, 1982). We describe it using this general
indicator:

R(k) =In(L(k + 1)) — In(L(k)) (16)

t(4k) = ([R(k + Ak)PR(k))

1
(R(k)*? 17)
where <R(k)?>? is a normalization and [R(k + Ak)]? denotes future

volatility.
4. Simulation results

In the simulation model, we will go a step further to explore the
stylized facts in the downside market. To be specific, we will explore
the formation mechanism of the stylized facts in the downside market,
including synchronized behavior, varying correlations and the leverage
effect. Our ultimate goal is to reproduce a market crash, which means
synchronizing continuous market drops in a short time period.

4.1. Parameter setting

The parameter setting of the simulation is shown in Table 2.

4.2. Synchronized behavior

In this section, we examine the relationship between a normalized
index return and behavioral synchronization. Because high frequency
order data is hard to get, it is understandable that the empirical results
are limited. Some scholars used questionnaires to obtain estimates after
a crash event. However, in an agent-based model, we can easily get the
simulated data and we can efficiently study the synchronized behavior.

As shown in Fig. 1, the synchronized behavior has a positive cor-
relation with the absolute indexes rate of change. Specifically, positive
index returns lead to more bid orders while negative index returns lead
to more ask orders. What's more, this tendency becomes more obvious
when the index makes numerous changes. If the market is relatively
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Fig. 1. Synchronized behavior. The relationship between the isochronous
normalized index return rate and the degree of behavioral consensus.

stable, which means the index return is close to zero, then the trading
behavior is mostly heterogeneous and the buyers and sellers are roughly
balanced. This phenomenon happens at different time scales and the
positive and negative extremes are asymmetric. As we can see, the
negative extreme returns are severer than positive extreme returns.

4.3. Increased downside correlation

This study successfully reproduces the increased downside correla-
tion at different time scales. As shown in Fig. 2, the average correlation
among individual stocks increases during highly volatile periods. In
addition, in a downside market, this correlation increases much more
than in an upside market. This is because of the model's design. First,
the traders' behavior tends to be affected more by the index return in a
highly volatile market according to our hypothesis, and this would lead
to highly homogenous orders and increase the stock correlation when
the index changes considerably. Second, in our model, the agents tend
to submit orders at lower prices when they have a negative expectation

0.5 T T T T T T T T

+ + ok=10
0451 sk=20| 1

04 1

Table 2
Parameter setting in the simulation.
Parameter Value Description
Lo 1000 The Initial stock index
N 4000 The number of agents
M 5 The number of kinds of stock
T 500 Total trading day
A 40 The number of agents making trading decisions in
an interval for isochronous data
Djo 100 The initial price of stock j
Ci(0) 100%{1,2...,10} The initial cash endowment of agent i
Q'(0) {1,2...,10} The initial stock endowment of agent i
8 0.03 The standard deviation of the price adjustment
h 20 The adjustment parameter of the index coupling
strength
hy 0.02 The price adjustment parameter (associated with
the expectation) for the bid order
hy 0.03 The price adjustment parameter (associated with

the expectation) for ask order

02t + 4

0.1 ® ++ 4

++ e @~
L T FPOYPPYY ¥+ |
-5 -4 -3 -2 -1 0 1 2 3 4
R(k,0k)

Fig. 2. Increased downside correlation. The relationship between the iso-
chronous normalized index return rate and the average correlation among in-
dividual stocks.
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Fig. 3. Leverage effect. The return-volatility relationship can be described by an
exponential function ((Ak) = — 6.54e~ %1032 In addition, the sub graph is the
semi-log result of the fitted exponential function.

compared to a positive expectation. These two factors lead to the result
together.

4.4. Leverage effect

Our model also successfully reproduces the leverage effect. As
shown in Fig. 3, the current index return and future volatility have a
negative correlation and this correlation decreases over time. The ne-
gative correlation lasts until the lag is approximately 20. The points can
be fitted with the exponential function :(Ak) = — 6.54¢ ™ 0-16034k

In fact, we have to say that the leverage effect mainly results from a
downside quotation. To test this, we simply show the relationship be-
tween the current return and volatility in the next period (see in Fig. 4).
As you can see, if the current return is negative, then the current return
and future volatility have a negative correlation. However, if the cur-
rent return is positive, then the current return and future volatility have
a positive correlation. Moreover, it results in an asymmetry in the
downside and upside situations, if we consider correlations in all ranges

0.019 T T T T T T T T

+ +  0k=10

0.018 ske20 | 1

0.017 7

0.016 + .

0.015 - 7

0.014 1

o(k+1,0k)

0.013 | +o .

L + 4
0.012
*
++ J

+++++++++

0.011

504+
0.01 1 TR POt .

0.009 . . 1 . I . I .
-5 -4 -3 -2 -1 0 1 2 3 4

R(k,dk)
Fig. 4. The relationship between the current index return rate and the volatility

in the next time period. o(k + 1,Ak) denotes the standard deviation in the Ak
period from k + 1 time node.
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of the stock index returns, we still come to the conclusion that current
returns have negative correlations with future volatility. If we can gain
insight into these phenomena, then it would be easier to understand the
leverage effect.

4.5. Market crash

We display a typical crash day (see Fig. 5), which is the day con-
taining the largest negative isochronous index changing rate. (a)—(e) are
the price trends of individual stocks, while (f) is the quotation of the
stock index. Although the largest negative isochronous index changing
rate happens at the beginning of the day, both the stock index and the
individual stocks experience synchronized big drops (almost 40%) fol-
lowing this day. This proves our reasoning for the causes of crashes is
plausible; a market drop itself can cause a market crash.

The conduct mechanism is as follows: first, the market experiences a
relatively big drop for some reasons or from just random factors;
second, the traders panic and they start to depend more on the stock
index when making decisions; third, their expectations are then more
likely to be negative, so they submit sell orders (that is to say, syn-
chronized behavior is enhanced) with lower prices; individual stock
prices fall at the same time (so the correlation among individual stocks
is greater) and causes a further market drop (leverage effect). In a word,
the stylized facts are highly related to the crash conduct mechanism.
We can understand the stylized facts within the same framework.

5. Sensitivity analysis

We apply a sensitivity analysis to important parameters in our
model and show how these parameters influence our results. The var-
iation in results mainly come from three aspects: the first is the ad-
justment parameter of the index coupling strength, h; the second is the
price adjustment parameter (associated with the expectation) for the
bid (ask) order, h;(hy); the last is the standard deviation of the price
adjustment, 6.

At h = 10, the leverage effect still exists, but the negative correla-
tion between the current return and future volatility decreases much
quicker than from the basic situation where h = 20. The increased
downside correlation disappears, which means the correlation becomes
quite weak. While at h = 30, the increased correlation becomes more
symmetric no matter whether the market quotation is downside or
upside, but the leverage effect shows regular oscillations at the first few
steps (see Fig. 6). We find that the orders are highly homogenous when
h is big enough and this makes the market liquidity temporarily de-
crease. According to our simulation, the leverage effect and increased
downside correlation stays stable when h is in the range from 18 to 22
(synchronized behavior is more severe if h is larger, but the basic
qualitative trends are the same under the adjustment mechanism of b,
so we don't display it in this section).

In regard to h; and hy, we just need to consider the relative values.
Therefore, we fix h, and change the value of h;. When h; = 0.01, the
downside and upside increased correlation become more asymmetric
(see in Fig. 7). This is because the difference in price adjustment be-
tween positive and negative expectations is widening. When the ex-
pected function is positive, the price is adjusted upward by a smaller
amount than the negative situation. In other words, the positive feed-
back effect of price changes is stronger in the case of market declines. In
addition, when h; =h,=0.03, the downside and upside increased cor-
relations become more symmetric. The leverage effect breaks down,
that is to say, there is no significant negative correlation between return
and future volatility. This proves the increased downside correlation
and the leverage effect are both related to the asymmetric price ad-
justment mechanism.

Lastly, we explore the effect of §. When § = 0.04, the downside and
upside increased correlation become more symmetric (see in Fig. 8) for
the reason that the asymmetry of the price adjustment of selling and
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Fig. 5. The market quotation of the day containing the biggest negative isochronous normalized index return rate. (a)—(e) are price trends of individual stocks, and (f)

is the quotation of the stock index.

buying orders is relatively weakened when § is larger. When § = 0.02,
the downside and upside increased correlation become more asym-
metric, which is because the price adjustment factor associated with the
expected effect is more effective when § is smaller. The leverage effect
decays more quickly.

To be precise, the most important mechanism is how we adjust b
and get the order price. The leverage effect and increased downside
correlation mainly result in the mechanism where traders care more
about the market quotation in volatile conditions and traders tend to
submit sell orders with lower prices when they encounter a negative
index return.
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6. Empirical analysis

In this part, we choose two samples of Chinese stock market to
verify the stylized facts of increased downside correlation and leverage
effect. All the data of this part comes from the China Stock Market and
Accounting Research (CSMAR) database.

6.1. Increased downside correlation
Preis et al. (2012) analyzed the daily closing price of the 30 stocks

forming the Dow Jones Industrial Average (DJIA) for 72years. The
result showed that the average correlation among individual stocks
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Fig. 6. The results when h = 30. (a) shows the result of the leverage effect, and (b) shows the result of increased downside correlation. The leverage effect shows a
periodic oscillation in decay, while the increased correlation becomes more symmetric.
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Fig. 7. The results when h; =0.01. (a) shows the result of the leverage effect, and (b) shows the result of increased downside correlation. The increased correlation

becomes more asymmetric than h; = 0.02.
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Fig. 8. The results when 8§ =0.04. The increased correlation becomes more symmetric than § = 0.03. In addition, the leverage effect decays more slowly.

increased during highly volatile periods. In addition, in a downside
market, this correlation increases much more than in an upside market.

We use the daily closing price of the constituent stocks of the
Shanghai Stock Exchange 50 Index (SSE 50 Index) from January 4,
2005 to December 25, 2013, a total of 2177 trading days. The SSE 50
Index is composed of 50 representative stocks with large scale and good
liquidity in Shanghai stock market. We use the method of Section 3 to
analyze the average correlation among individual stocks in Chinese
stock market. We use Eq. (11) to calculate the normalized return R(t, At)
of the SSE 50 Index and Eq. (14) to calculate the average correlation
p(t,At) among constituent stocks. As shown in Fig. 9, the average cor-
relation among constituent stocks is larger when the market is in a
downward state. The maximum correlation is close to 0.8 when the
interval is 10 trading days (At = 10).

6.2. Leverage effect

Bouchaud et al. (2001) analyzed the daily data of a set of 437 US
stocks which were the constituent of S&P 500 index from January 1990
to May 2000 and a set of 7 major international stock indices from
January 1990 to October 2000. They found that price drops increased
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the volatility (i.e. there was a negative correlation between past returns
and future volatility). Li, Yang, Hsiao, and Chang (2005) examined the
relationship between expected stock returns and volatility in the 12
largest international stock markets during January 1980 to December
2001, and the results showed that there was a significant negative re-
lationship between expected returns and volatility in 6 out of the 12
markets. Bollerslev, Litvinova, and Tauchen (2006) found the correla-
tions between absolute high-frequency returns and current and past
high-frequency returns to be significantly negative for several days
using the high-frequency S&P 500 futures data from January 4, 1988,
through March 9, 1999. Yeh and Lee (2000) supported the evidence
that the impact of negative unexpected return on future volatility is
greater than the impact of positive unexpected return in Taiwan stock
market and Hong Kong stock market from May 22, 1992 to August 27,
1996. All the above references supported the evidence of the negative
correlation between past returns and future volatility.

We choose the daily trading data of the Shanghai Composite Index
to analyze the leverage effect in Chinese stock market. The sample is the
daily closing price of Shanghai Composite Index from January 4, 2005
to December 2, 2014, a total of 2406 trading days. We use Eq. (17) in
Section 3.3 to calculate the correlation between past returns and future



X. Dong, et al.

5000 T T T T

4000

3000

2000

The Index Price

1000

0

2005 2007 2009 2011 2013

Time

(b) The price of the SSE 50 Index

International Review of Financial Analysis 64 (2019) 13-21

sl : : : : : : ]
* *  6t=10
* @  §t=30
077 o = 5t=50] |
[] *"f’;='l
0.6 * 5 xo" 1
%@
—_ *
= l*ak *
\"'.i 05+ * .*.O.ll 7
QU [ ] *éﬁr % ***
oWy Ta ¥ %
0-4 . * f' - E
0.3 -
0.2 ' ' ' ' ' ' '
-3 -2 -1 0 1 2 3
R(t,dt)

(b) increased downside correlation

Fig. 9. (a) The price of the SSE 50 Index from January 4, 2005 to December 25, 2013, a total of 2177 trading days. (b) Increased downside correlation. The
relationship between the isochronous normalized index return rate and the average correlation among constituent stocks.
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Fig. 10. (a) The price of the Shanghai Composite Index from January 4, 2005 to December 2, 2014, a total of 2406 trading days. (b) Leverage effect. The return-
volatility relationship shows a negative correlation and it can be described by an exponential function.

volatility of the Shanghai Composite Index. As shown in Fig. 10, the
current return and future volatility of the Shanghai Composite Index
have a negative correlation and this correlation decreases over
time. The negative correlation lasts until the lag is approximately
15. The points can be fitted with the exponential function
I(AY) = — 7.492¢ %1974t (Rig 10).

7. Conclusion

This paper focuses on the endogenous origins of extreme markets.
We merge index coupling into investors' behavior and provide ex-
planations of market collapses. In fact, we were inspired by the escape
panic issue from the field of complexity science and feedback from
questionnaire surveys about investors' behavior in the 1987 crash
(“Black Monday”). We recall that the market crash was a result of the
market itself dropping. Traders tend to panic under market stress,
which leads to the self-reinforcement of a market drop. We designed a
simple agent-based model with a double-auction multi-asset market, in
which traders take the entire market quotation into consideration when
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making trading decisions. The simulation results show that when in-
troducing such behavioral factors (panic when the market drops) into
the trading process, the market may drop continuously in a short time.
Moreover, some stylized facts in the market, such as synchronized be-
havior, the leverage effect and increased downside correlations can be
reproduced in our model. In other words, we demonstrate that a market
drop itself can cause an endogenous market crash and the stylized facts
are related to this mechanism.
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