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Network embedding is a frontier topic in current network science. The scale-free property of complex networks can emerge as a
consequence of the exponential expansion of hyperbolic space. Some embedding models have recently been developed to explore
hyperbolic geometric properties of complex networks—in particular, symmetric networks. Here, we propose a model for
embedding directed networks into hyperbolic space. In accordance with the bipartite structure of directed networks and multiplex
node information, the method replays the generation law of asymmetric networks in hyperbolic space, estimating the hyperbolic
coordinates of each node in a directed network by the asymmetric popularity-similarity optimization method in the model.
Additionally, the experiments in several real networks show that our embedding algorithm has stability and that the model

enlarges the application scope of existing methods.

1. Introduction

Complex networks can largely simplify real systems and
preserve the essential information of the interaction struc-
ture. It thus is an ideal tool for investigating complex sys-
tems. However, complex networks are models with
nongeometric properties, which include a large set of tools
and methodologies developed in geometry that cannot be
applied to complex networks. In this context, there is a wave
of studies exploring geometric properties of complex net-
works, aiming at mapping complex networks into latent
variables (that is, hidden variables and Gaussian latent
variables) or a low-dimensional metric space (that is, Eu-
clidean space or hyperbolic space) [1-3].

Advances in network geometry have shown that struc-
tural properties observed in scale-free networks derived
from real complex systems can emerge as the geometrical
properties [4, 5]. Hyperbolic geometry is a branch of non-
Euclidean geometry, and it has many applications in
practical engineering techniques. More importantly, the
random geometric model and hyperbolic embedding model
of growth [3, 6] proposed later can easily explain the het-
erogeneity and high clustering of scale-free networks and

even give the clear meaning of each coordinate. These
models can not only simulate the growth of networks but
also explain the dynamic process of the classic BA network
model in complex networks. Related studies are thus be-
coming increasingly popular, and network models with
geometric properties have been used successfully in many
fields in network science and other disciplines, including
brain science [7, 8], international trade [9], route transfer
[10-12], and protein formation mechanisms [13, 14].
When this research framework was proposed, it attracted
wide attention from scholars, and then models and hy-
perbolic spatial embedding methods were developed for it
[3, 6, 15-17]. These models have a great performance in
studying the potential structure of networks. In particular, in
the popularity-similarity optimization method, the hyper-
bolic property of complex networks is combined with the
hidden space property, and the spatial position of nodes is
estimated by statistical inference. However, these models
cannot describe real systems completely. One drawback is
that those models ignore the directionality of links. The
relationships between nodes may be unequal in most real
networks, which is the so-called asymmetry property of
links. Although the asymmetry property may bring many


mailto:yfan@bnu.edu.cn
https://orcid.org/0000-0001-5321-588X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8372928

challenges for network embedding, ignoring the asymmetry
of directed networks will lose much important information
and cannot lead to a full representation of the structure and
function of real systems.

Another branch of study is network representation
learning or graph embedding through machine learning
methods and matrix analysis [1, 18-22], including directed
networks [23, 24]. Those models have provided many useful
modeling inspirations for us, such as motifs, random walks,
centrality information with graph convolutions [25], the
high-order proximity [26], and the spatial and temporal
proximity [27]. Unfortunately, an obvious limitation is that
these models cannot identify the real meaning of the spatial
coordinates when obtaining a vector representation of the
nodes. More importantly, since it has been demonstrated
that a scale-free degree distribution is a basic condition for
the embedding of hyperbolic space [3], it is urgent to develop
a directed network embedding model in hyperbolic space.

To further address this problem, we explore the intrinsic
relationship between directed links and the network to-
pology. Interestingly, in a nontrivial way, directed networks
have a hidden bipartite structure [28]. We checked that all
kinds of directed networks have such structures, and this
phenomenon is the universal law of directed networks. The
contribution of our work is that we offer a directed network
embedding scheme based on node information multiplexing
and identifying a potential topological structure (bipartite
structure) as well as a new idea for the dimensionality re-
duction of directed network data. In addition, using visu-
alization technology, we provide a new snapshot of directed
networks in the hyperbolic space, which enables us to show
the nodes’ status and macrolevel structure and features.

In this paper, we propose an asymmetric popularity-
similarity optimization method for embedding directed
networks into hyperbolic space through the bipartite
structure of directed networks, and our methodology is
grounded in the network topology information and its
characteristics. From this perspective, we first introduce the
concept of the bipartite structure of directed networks firstly.
Based on this, the mapping model for mapping nodes from
directed networks to hyperbolic space is discussed in Section
2. Four real-world directed networks are used to test the
applicability of our mapping method in Section 3. Section 4
closes the article with concluding remarks.

2. Materials and Methods

2.1. Data. In the simulation, we use four empirical network
datasets and give the full description of the data source,
including the field of Caenorhabditis elegans (C. elegans) neural
systems, the international trade, email relationships, and the
international migration. (1) Email dataset is the internal email
communication network between employees of a mid-sized
manufacturing company [29, 30]. The network is directed and
nodes represent employees and edges between two nodes are
individual emails. (2) International migration dataset is a
weighted directed network with 153 nodes and can be required
from the world bank (http://www.worldbank.org/). Adjacency
matrix a;; describes the immigration from the country i to j
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with the migration flow w;;. (3) C. elegans neural dataset, a
directed network, describes the neural interconnection via
chemical synapses and gap junctions, which can be obtained
from the Wormatlas database [31]. (4) The international trade
dataset describes the trade relationships among countries (or
regions), which are obtained from the United Nations com-
modity trade statistics database (https://comtrade.un.org/). If
country i imports to country j with weights w, adjacency
matrix is a;; = w.

2.2. Methods

2.2.1. Complex Network and Hyperbolic Space. Hyperbolic
space is an isotropic space with negative curvature that cannot
be embedded in any Euclidean space. The topological geometry
and hyperbolic geometry of complex networks are intimately
related, which has been well explored in mathematics [32],
because the shortest paths in networks, those defining chemical
distances, closely follow their hyperbolic geodesics in the latent
space. Poincaré disks with radius R = 2In (N/mux3) can be
used to represent hyperbolic spaces according to Ref. [3]. The
main property of hyperbolic geometry is the exponential ex-
pansion of space: the area A(R) of a two-dimensional hyper-
bolic disc grows with R as A (R) ~ eR. From the perspective of
hyperbolic geometry, the emergence of scale-free networks
produces two exponentials: node density exponentially in-
creases with the distance r from the center of the disk, and the
average degree exponentially declines with r. In early studies,
the hyperbolic geometric model and hidden geometric models
perform equivalently for embedding scale-free network to-
pology into a metric space.

A hidden geometric model assigns to nodes their ex-
pected degrees « and 0, where « is derived from the power-
law distribution p (k) = K(})’_l (y-Dx¥,xg=k(y-2)/(y-1)
is the minimum expected degree of node, k is the average
degree of the network, and y is the power exponent. 0 is
chosen uniformly at random from [0, 27]. Then, each pair of
nodes, with probability f(y) = (1+x¥)”", is connected,
where the effective distance y;; = d;;/ux;x; = AON/2unx;x;,
where the angular distance d/ij = AON/(27), and the pa-
rameters 3 and y are constrained by y = Ssin (n/f3)/27k.

To build a hyperbolic geometry model for complex
networks, —1 is set as the curvature of the hyperbolic space.
Poincaré model assigns to nodes their radial » coordinates
with density p(r) = asin har/coshaR — 1 and angular co-
ordinates 6 with density p (6) = 1/2m. The geodesic distance
x Dbetween nodes (r;,0;) and (r, Gj) satisfies
cos hx = cos hr; cos hr; — sin hr; sin hr; cos AG. Nodes are
connected by probability f(x)= (1+ e RP2Y~1 - The
process of constructing complex networks reflects the
competition of two forces in this model: popularity (r) and
similarity (0).

In addition, note that the hidden metric space model and
hyperbolic geometric model of a network perform equiva-
lently through the x — r transformation: r = R — 2 In (x/x,).

2.2.2. Interaction between Links with Direction and a bi-
partite Structure. Directed links, as important linking
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features of the network mode, are increasingly used to in-
corporate the dynamics of the evolution and node status of
real systems. The asymmetry property increases the difficulty
of network embedding. The asymmetry of links can be
identified in the topological information of complex sys-
tems, that is, a bipartite structure [33]. Different from di-
rected networks, each node is split into two nonoverlapping
groups, according to its unique feature, in bipartite struc-
tures. Modifying modeling methods of directed networks,
therefore, is critical in overcoming difficulties.

Nodes in directed networks can be split into two parts,
and each side of a link comes from different sets. Such a way
of modeling is called the directed network with a bipartite
structure, as shown in Figures 1(a) and 1(b). Specifically,
each node v; in a directed network contains g, in set A and b;
in set B in a bipartite structure. A directed link goes from v;
to v; (v; — v;) and can be mapped by (a; — b;). By doing
so, the number of nodes becomes twice as large especially,
but this does not affect subsequent work, and a directed
network will be converted to a bipartite network. Addi-
tionally, the method reconstructs geometric directed net-
works through dividing nodes into two categories, but these
two categories are not independent completely and its in-
trinsic relationships will be considered by the parameter f3
during the modeling.

Since the bipartite structure has been discovered to be a
hidden geometric property in the latent metrics space [16],
we also expect the origin node and the end node to be able to
form directed links under the multiscale node multiplexing
perspective. Relationships between direction and topology
provide a powerful idea for spatial mapping and directed
link prediction. Unlike in the bipartite network, node i in
two sets (a;,b;) is one-to-one and they represent a certain
kind of attribute of node i. For directed networks, for ex-
ample, in the case of international trade networks, countries
with stronger export capabilities are more likely to become
trading partners with ones that have a high level of import.
To show this, we develop a new method for displaying the
asymmetry of the adjacency matrix of networks in hyper-
bolic space with a hybrid of direction and topology.

2.2.3. A Geometric Model of a Directed Network in Hyperbolic
Space. The directed network embedding model describes
how generative geometric directed networks are embedded
in hyperbolic space. The model multiplexes node infor-
mation as an embedding foundation by identifying the bi-
partite structure of directed networks and considers the
trade-off between node popularity, represented by the radial
coordinate, and similarity, represented by the angular co-
ordinate distance, to be the definition of the connection
probability.

In the binary network embedding model, the popularity
is higher and the probability is greater between nodes with
greater similarity. Unlike binary networks, directed net-
works should be linked by trading off four types of forces,
namely, the similarity and popularity in each set (set A or set
B). Radial coordinates (r,; and r;;) and angular coordinates
(6,; and 6y,;) represent the popularity and similarity of nodes,

respectively. The connection of a pair of nodes in directed
networks would balance four forces: out-popularity r,;, out-
similarity 6y, in-popularity r,;, and in-similarity 6,;. The
flow diagram of the directed network embedding algorithm
is shown in Figure 1.

Computational implementations of the directed em-
bedding model are as follows.

Step 1. Obtaining model parameters from directed networks
with bipartite structures.

The scale-free property is ubiquitously observed in real-
world networks, and hyperbolic geometry captures such
features of complex networks. According to the principle
that nodes multiplex information, basic properties can be
computed: the average degree k,, the degree distribution
(P(k,) ~ k.)"), and exponent of the power-law distribution
y, in set * € {A, B}.

However, not all of the real-world networks have the
directed scale-free property. Besides, most networks are
heterogeneous in node degrees and weights, and those
heterogeneities enable us to address the problem: finding the
backbone structure of the complex network by filtering links
[17, 34] to capture the power-law property in directed
networks. The method of constructing backbone networks in
the paper is that the link with the smallest weight will be
deleted in turns and stopping by the threshold. To find the
appropriate value of the threshold, we plot the fraction of
remaining nodes in the backbone N3/N,, vs. the fraction of
remaining links Lg/L, for each deleting step. According to
Ref. [9], the best choice of threshold is the point in the plane
that maximizes the vertical distance to the diagonal, so that
most nodes remain in the system and most links with small
weight will be removed.

Another significant parameter of our model is
B € (1,+00). B controls the clustering property of complex
networks and is intractable due to its nontrivial dependence
on the topological structure [16]. Estimating parameter in
the symmetric network embedding model is performed by
comparing the real networks to synthetic networks gener-
ated with the model using different values for several to-
pological properties [9, 11, 35]. However, this method fails to
compute the values of directed networks in experiments.
Note that the embedding model splits each node into two
sets, but these two sets should intuitively be dependent to a
certain extent. Therefore, the f in the directed network
embedding model needs to take into account the clustering
property and intrinsic relationships between two set nodes.

Common neighbors meet the conditions discussed
above. For one thing, the clustering definition in bipartite
structures derived from common neighbors to enable rep-
resenting an intrinsic relationship between two sets, such as
the quadrilateral-based clustering coefficient and the 4-loop
density [5]. For another, empirical results indicate that the
higher values of f favor connections at smaller angular
distances, and the number of common neighbors m grows
asymptotically as a power-law function of angular similarity:
m ~ A0 P [16]. Here, we use the number of common
neighbors as the coarse-grained representation of the angle
similarity to estimate B (that is, p(m) ~ m™Ps in set A and
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hidden metric model with the asymmetric popularity-similarity method is used to construct the embedding process, where the estimation
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and visualization of directed networks in the hyperbolic plane.

p(m) ~ m~Pv in set B). We, finally, take the area under the
curve (AUC) as a function of 8, (namely, AUC(,)) to
determine the parameter by the performance of mapping
effect in our model. Specifically, for international trade
networks, international migration networks, and email
networks, 8 = 3.5; the C. elegans networks use f3 = 3.42.

Step 2. Embedding into hyperbolic space.

Geometric models—hyperbolic geometric models and
hidden geometric models—have successfully captured the
natural geometry underlying real complex networks. Simi-
larly, a directed network embedding into hyperbolic space
also has two equivalent models. Next, two geometric models
of directed networks will be introduced.

In the hyperbolic model of directed networks, scale-free
directed networks are generated by scattering N nodes ran-
domly into a hyperbolic disk of radius R. Each node v; is
assigned radial coordinates r and angular coordinates 6:

v, (14, 0,;) are in set A, and vy, (ry;, 0;;) are in set B. The
connection probability (p;;) of the directed link v;; from a; to
b; in the hyperbolic space represented by the Poincare disk is
defined by the Fermi-Dirac distribution: f (x,,;) = (1+
P Fain=R/2)~1 The hyperbolic distance X415, Detween a; and
b]- is given by the hyperbolic cosine function:
cos hxai,bj = coshr,; - cos hry,; —sinhr,; - sin hrbj cos A6.
Note that hyperbolic distance can be well approximated by
Tai T Tpj+ 21n(dai,bj/2).

In the hidden geometric model of directed networks,
connecting probability between nodes is any integral function:

F=(0+4)" (1)

where the effective distance between the nodes
X = daipjltKgiky s and p = Bsin(n/p)/2nk, is parameter of
model. k,; and «;; represent the expect degree of nodes in set
A and set B, respectively. Expect degree «, ; for every node is
drawn from the power-law distribution:
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P(K*z) - K (Y*l ) *)zl i’ (2)
where «,; € [k,5,+00), the minimum expect degree
Ko =k,(y,—2)/(y,—1), the average degree k,,

dyipj = NAO/2m, and A6 = min{|6,, - 6, |, 27— 16,; - 6, 1}.
Note that radial coordinates r, ; and expected degree «,; have
an intrinsic relationship, as r,; = R-In(x,;/x,,) and
R =21In(N/nux}). To facilitate solving the parameters, we
apply hidden geometric models for a directed network
embedding in Step 3.

Step 3. Spatial positions and parameter estimation.

Given a snapshot of a real directed network consisting of
N nodes, we use the hidden geometric model to represent a
directed network. An asymmetric popularity-similarity
optimization method is proposed by us to compute the
radial (popularity) r,; and angular (similarity) 6,; coordi-
nates for each node i. In particular, the embedding process of
asymmetric links aims to find the coordinates of every node
such that the likelihood that the given the resulting directed
network topology is generated by the model described above
is maximal.

Form a statistical perspective, inferring coordinates is to
find the best match the hyperbolic model by a given adja-
cency matrix. The maximum likelihood estimation method
has been widely applied to infer coordinates in hyperbolic
embedding [9, 11, 36]. The hidden variables take particular
values {x;, 0,;} in the network and can be found from the
observed ad;acency matrix a;; using Bayes’ rule as follows:

< *1’6*1’a1] Y*’/‘; k )
( Kyis *z laz]’)}*’/}k) _ >
F(ay]y.pk)

(3)

where % (i, 0.5 @;j 1 y.>  Bok.) = Prob({x,q, 0,.)Z (a;;
[{x.0>0.i}, Vs> B> k,). The prior probability of the hldden
variables is given by

N
Prob ({x,,,0.,}) = @m) N [ p (k. ). 4

i=1

and the likelihood is

3(%1 ) {K*Pe*i}’ Y*’/j’z) - H f(X)aiJ [1 - f(X)]k

I<i<j<N
(5)

where a;; is adjacency matrix; if there is a link between i and
j»a;;=1, otherwise a;; = 0. The hidden variables are {x,;, 0,;}
and the effective distance x = NkAO/S sin (71/B)x ;% The
obtained hidden coordinates are optimized by maximizing

the likelihood in equation (3) and its logarithm:

lng({;{*i,e*i}laﬁ,y*,ﬁ,k) C- YZIHK*I‘FZ%JIHP(X)

i<j
n 2(1 - aij)ln[l -p(0l
i<j

(6)

where the constant C is independent of «,; and 0,;.

Next, node positions can be obtained by the likelihood
function Z. Firstly, inferring the radial coordinates is rel-
atively easy. We derive the analytical solutions by partial
derivation of the equation (6) with respect to the expected
degree «, ;:

0
In? = <ZP(X Z > (7)
Kai j#l

aK*i

By doing this, we can obtain the parameter «,; (the
expected degree of node i) from the expected degree x.; as
follows: x; =k,; - y,;/p and «,; = max{k,; - y,,/p, K*O}

Similar to r, the angular coordinates are obtained by
maximizing the likelihood function equation (6). However,
it is difficult to obtain an analytical solution, and numerical
methods have therefore been used to estimate angular co-
ordinates, including the standard Metropolis-Hastings al-
gorithm (SMH) [37] and the localized Metropolis-Hastings
algorithm (LMH) [11]. Since the LMH method performs
well in estimating and computes angular coordinates exactly
it in a distributed manner without knowing the global
network topology [11], we applied the LMH method to infer
angular coordinates. The global log-likelihood equation (5)
is represented by the following equation:

ln3<aij | {K.i> e*i},y*,ﬁ*ﬁ) = Z a;jlnp (x)
i<j (8)
+ > (1=a;)n[1-p(p]

i<j

In the LMH method, the local contribution In%Z; of every
node i to the global log-likelihood InZ will be defined firstly
asln¥; = Z#jaij Inp(y) + Zi# (1-a;)In[1 = p(y)], where
In Z = 1/2InZ;. Next, nodes are visited one by one. When
the particular node i is visited, all other nodes have fixed the
positions, and the angular position of i is moved according
to the fitness, which maximizes the local log-likelihood at
each node visit. The angular position is sampled at intervals
with Af = 1/N.

3. Results

3.1. Validating the Asymmetric Popularity-Similarity Opti-
mization Method. To assess how well the asymmetric
popularity-similarity optimization (A-PSO) method per-
forms, we examine the embedding accuracy by comparing
the topology inferred by the A-PSO method to real-world
directed networks. Several experiments are conducted to
analyze the effectiveness of the following methods: the C.
elegans neural network, the international trade network, the
email network, and the international migration network.
Additionally, we analyze the robustness and performance of
the embedding model by repeated experiments, and the
results are stable. We take two measures: (1) comparing the
original network to the topological structure, i.e., in terms of
the degree distribution, clustering coefficient distribution,
and betweenness centrality distribution; and (2) performing
a global test: linking the empirical connection probability



with data to the theoretical prediction with hyperbolic
distance equation (1).

The first test to evaluate embedding accuracy is that we
experiment and compare the first-order neighbors of nodes
and the higher-order cases, including degree, clustering
coeflicient, and betweenness centrality, according to stan-
dard practice. We represent degree cumulative distribution,
clustering cumulative distribution, and betweenness cu-
mulative distribution in Figure 2 and observe a good match
between the properties of the synthetic networks con-
structed by our models and real directed networks.

The second check is that we compute the connection
probability from empirical network data and compare it
with the theoretical prediction given by equation (1). The
observed closeness of the empirical and theoretical con-
nection probabilities in Figure 3 suggests that hyperbolic
metric spaces are reasonable representations of the directed
network. In addition, we also find the area under the curve
(AUC), which is widely used in the field of link prediction as
an accuracy evaluation index. AUC statistics measure how
well our model can reproduce networks in hyperbolic space,
and the best possible result corresponds to AUC=1. From
Table 1, the embedding results with high AUC suggest that
directed networks can be reproduced in hyperbolic space,
especially socioeconomic networks, whose AUC values are
well above 0.88: the international trade network and the
email network.

3.2. Linking the Hyperbolic Property and the Empirical
Network. Using the A-PSO method for embedding directed
networks into hyperbolic space in the above sections, we
showed the association between the theoretical model and
empirical networks. In this section, we first provide com-
parisons between hyperbolic properties (popularity, dis-
tance, and the core-periphery structure) and economic
measures to show how they correlate monetary macro-
economic indicators and represent economic systems and
their time evolution in hyperbolic space. Next, we analyze
the relationship between disk partitions and real-function
areas by comparing different measures of distance (simi-
larity, real distance, and hyperbolic distance) in the C.
elegans neural system.

3.2.1. Economic Systems in Hyperbolic Space. The interna-
tional trade network is a complex system of states and their
trade relations, and the aim of examining it is to understand
international trade in terms of quantities and mechanisms
[38-40]. The three key characteristics of the international
trading system—globalization, stratification, and local-
ization—lay the foundation for the geometric interpretation
of the international trading system [9]. From the perspective
of the directed network generation mechanism, closer
countries have a greater chance of becoming connected by
national status and similarity in the underlying trade space.

Through statistical inference techniques and the struc-
tural information of networks, a directed international trade
network can be embedded in hyperbolic space. Such an
embedding model uses two dimensions of national
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information for each country, import popularity and export
popularity. Extracting a higher-dimensional national status
measure can help to analyze how the multitrade relations
change the world trade and even reshape the world trading
system. But the international trade networks often have not
the directed scale-free property; we use the filtering links
method mentioned in Step 1 to address a problem, as shown
in Figure 4(d).

To study this issue further, we apply our model to vi-
sualize international trade systems and infer the popularity
and similarity properties (r,;, r,;, 0, 0,;) of nodes,
according to the data from 20 years (1996-2016) of the
international trade. Recently, studies have discussed the
correlation of radial coordinates as equivalent to correlations
among node degrees and the national economic scale
[38, 39]. Similarly, radial coordinates and GDP have a
significant negative correlation (approximately —0.5), which
indicates that the spatial position of countries can be used to
identify the national economic size, especially the country’s
export capacity (the correlation coefficient of imports and
GDP is higher than that of exports). That is, export status can
be used as a coarse-grained measure of the national economy
size. Moreover, the correlation coefficient between angular
distance and geographical distance is not significant (ap-
proximately 0.1), which indicates that the international trade
network does not have geographical clustering in the hy-
perbolic space. The core-periphery structure of hyperbolic
network shows that only approximately 35% of its nodes are
in the center position of the hyperbolic space.

The long-term evolution of the international trade
system based on the network hyperbolic embedding method
is shown in Figure 3(c). From the perspective of exporting
ability, it presents world energy commodity trade as an
imbalanced, diversified, and multipolar development. The
United States and Russia have always occupied a central
position, reflecting the fact that energy resources are the
decisive factor in exporting capacity. In particular, with the
depletion of the North Sea oil field, the UK’s export position
in energy trade has been gradually marginalized. Interest-
ingly, Saudi Arabia’s energy export status has gradually been
marginalized due to the change in the direction of Saudi
energy policy. Asia, Africa, and the European continent have
become active areas and injected new vitality into the energy
trade market. The European Community, China, and India
have moved to central positions following the increase of
their importing dominance. While India has moved towards
a more central position of superpower status during the last
few years, the United States, which is a leader among trade
superpowers, has been at the core of international trade.

3.2.2. Complex Ecosystems in  Hyperbolic  Space.
Caenorhabditis elegans is a soil-dwelling nematode that is
evolutionarily rudimentary. It contains approximately 300
neurons, and neural interconnections are made via chemical
synapses and gap junctions. Despite a century of investi-
gation, knowledge of nematode neuronal networks is in-
complete [41, 42]. Here, we use a directed hyperbolic
network embedded framework and the potential geometry
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FIGURE 2: Comparison results of the cumulative distribution: degree, clustering coefficient, and betweenness centrality. (a-1) The topological
properties in hyperbolic space and empirical directed networks to evaluate the validity of the model. The results of (a—c) the C elegans neural
network, (d-f) email network, (g-i) international migration network, and (j-1) international trade network, respectively, are shown.

of neurons as the entry point to provide a new perspective
for studying the topology and visualization of neural
networks.

The C. elegans neural network is embedded in the hy-
perbolic space with the geometric features of the neurons and

geometric distance (hyperbolic distance), and the topology is
found to conform to the simple and powerful probability-based
linking rule of hyperbolic embedding. We compare the em-
bedded results with the real positions of neurons and the
geometric distances: the position distance of neurons is the
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F1Gure 3: Empirical versus theoretical connection probability. The hyperbolic embedding of directed networks is successful, as the empirical
connection probability closely matches the geometric hidden model prediction. (a-d) The results of the C. elegans neural network, in-
ternational trade network, email network, and international migration network, respectively. The black dashed lines are theoretical results of
the connection probability, given by p(x) = (1 +x#)™". Note that the parameters used in the theoretical simulation are the same as the

corresponding empirical network. The pink dots are results of the empirical directed analysis. The whole range of hyperbolic distances and
connection probabilities are binned, and each bin is the average of the values in it.

relative position between the neurons, and the geometric
distances are hyperbolic distance and angular distance.
However, hyperbolic distance in our model is asymmetric,
and it is difficult for some real tasks, such as node clustering
analysis and node centrality computation. To further
compare distances in different metric spaces, we define the
symmetric distance as follows: x;; = x5, + Xp; ;. The re-
sults are shown in Figures 5(a) and 5(b). From the results,

we find that the angular distance is similar to the position
distance. The difference between hyperbolic distances and
position distance, on the contrary, is larger. This shows not
only that the effective distance between neurons includes
the distances of other dimensions than position distance
but also that the effective distance of the nervous system is

the result of a nonlinear hybrid of topological information
and spatial information.
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TaBLE 1: The basic properties of empirical network data.

Dataset Ya Vo AUC, AUC, B. By Nodes Links
Tradeweb 3.00 2.76 0.918 0.922 3.50 3.50 241 13666
Migration 2.92 2.16 0.912 0.917 2.49 3.50 153 8749
Email 3.50 3.50 0.867 0.881 3.50 3.50 167 5784
C. elegans 3.42 3.00 0.728 0.732 3.42 3.00 297 2345

(b)

FiGURE 4: Continued.
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FIGURE 4: The embedding results of international trade networks. (a, b) The visualization of the international trade network on the Poincaré
disk. To facilitate the display of the position of the nodes, we highlight the origin nodes and end nodes. (a) Origin nodes are highlighted, and
yellow nodes on the edge are end nodes so that the popularity and similarity of origin nodes in the disc are visible. (b) The end nodes are
highlighted. (c) The ranking evolution over time of the centrality of major countries as measured by the distance from the center of disc. (d)
The curve denotes the fraction of nodes Ny/N, vs. the fraction of links Lz/L,. Ny and Ly represent the number of nodes and links in

backbone networks. The pink dot represents the appropriate threshold in the extracting process.

Realistic networks can reproduce the properties of
clustering, small-worldness, scale-freeness, and rich-club in
the hyperbolic space. Another important feature of complex
networks that is commonly observed is the community
structure, in which the links of the inner community are
dense, and the links between communities are sparse [43].
Since the connection probability is a decreasing function of

the hyperbolic distance, there are no angular regions con-
taining a cluster of spatially close nodes that are more
densely connected to each other than they are to the rest of
the network. Nevertheless, the angular distance of the hy-
perbolic disc indicates the similarity of nodes, and the
partition of the disc is the potential module defined in
geometric space [13]. To obtain the community structure of
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F1GuRre 5: The result of mapping the C elegans neural network in hyperbolic space. (a, b) The relationships among the hyperbolic distance,
the angular distance, and the spatial distance. The abscissa indicates the distance between the nodes, and the ordinate is the statistic for the
number of distances. (c) The value of # according to the starting point of different partitions, which is used to find the optimal disc
partitioning result of 7. The blue and pink lines represent the results of 7, which are calculated from the angular distance and the hyperbolic
distance, respectively.

neural networks in the hyperbolic space after the nodes have Since there are 10 neural functional areas, we divide the
acquired settled coordinates, the best partition of the  hyperbolic discinto 10 parts of 36 degrees each and compare
Poincaré disc zoning is defined as the proportion that  them with real neural functional areas. Note that the angular
minimizes the average distance from one partition to the coordinates of nodes are distributed in [0,360°] and that a
rest. key factor is the difference in initial position selection, which
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may change the effect of the partition. To solve this problem,
we define the index 7, which represents the ratio of the
distances inside the community (Poincaré disc zoning) to
the external distances (the rest of the zoning), to describe the
optimal partition, #, as follows:

_ i G

-1
Z;'lzl,i#jc

. (9)
j

where # is the number of partition and C; represents the
average distance between nodes inside and outside the
community. The range of 7 is [0, 1]. 77 is closer to 1, the better
the community division.

In doing so, we obtain the optimal partition of hyperbolic
space by selecting different starting partition positions, taking
the minimum distance between nodes as the reference for the
initial partition span and maximizing #. We further con-
sidered hyperbolic distance and angular distance as the basis
for calculating # results, as shown in Figure 5(c). Due to the
strong spatial position dependence of neuron function, the
common information entropy of the community structure
and the functional partition is very low. An interesting finding
is that some neurons with higher rankings of out-directed
popularity belong to the same neurological functional area,
the lateral ganglion, such as RIAL, RIAR, SAAVR, RMDR,
and SMDVR, but the partitions in the hyperbolic space are
more scattered. This indicates that there are a large number of
long-range links among the neurons of C. elegans; for ex-
ample, the neuron RIAL, in the front, and VD12, in the
trailing regions, have similar angular distances in the hy-
perbolic disc, which is also the reason why the topological
partition is not consistent with the functional partition.
Additionally, the functional classification of the hyperbolic
embedding is a complement to the functional partitioning.

4., Discussion

In this work, we developed a mapping model of directed
networks in hyperbolic space and highlighted the bipartite
structure of directed networks. We especially focused on two
main issues: (1) how to identify asymmetrical links from
topological information, and (2) how to embed directed
networks into the hyperbolic space and whether it is feasible
to use empirical data to test the model. The results show that
the directed links are hidden in the topological information
in a nontrivial way. Based on empirical data, we mapped
some real directed networks into hyperbolic space, including
economic systems and biological ecosystems. We found that
our method can reveal the topological features of directed
networks, such as the degree of nodes, degree distribution,
clustering coefficient, and core-periphery structure.
Furthermore, we analyzed the importance of nodes and
evolutionary rules through visualization technology. The
results show that the spatial positions of nodes in the hy-
perbolic space can be used to quantify the importance of
nodes. The position change of nodes in the space is consistent
with the evolution of state status in the economic system.
More importantly, similar phenomena are observed in both
socioeconomic systems and nervous systems; namely, there

Complexity

are significant discrepancies between spatial aggregation and
the community structure of the topology. This is reflected in
two ways: one is that the common information entropy
between the community structure of hyperbolic space and the
spatial distribution of nodes is particularly low, and the other
is that the Pearson correlation coefficient between the node
hyperbolic distance and the true distance is not significant.
Long-range links weaken the spatial agglomeration of system
functions, which means that the hyperbolic embedding re-
flects the clustering system functions. The effective distance of
the network is the result of the trade-off between topological
information and geometric features.

It needs to be reiterated that, unlike the binary network,
the basis for the construction of the directed network is the
trade-off between the four coordinates r;, ry;, 0,;, and 6y,
Undirected network embedding is only based on the trade-
off between popularity and similarity, which may bias the
prediction of the network links at some point. For example,
consider the extreme case: if two nodes have large out-de-
grees and the in-degree is 0, the two nodes must be without
links. The chance of their being linked when undirected
networks are embedded is large. Last but not least, asym-
metric links increase the difficulty in embedding, which is
reflected in the embedding accuracy to some extent. The
frontiers of network geometry point that the community
structure can be used as a coarse version of its embedding in
a hidden space with hyperbolic geometry [44, 45]. From the
perspective of the mesoscale structure, the contribution of
community structure should be incorporated into the em-
bedded model in future studies, which may improve the
embedding accuracy and reduce the algorithm complexity.

Appendix

In this section, the performance of the embedding method
will be discussed further in the aspect of estimating angular
coordinates. The aim is to observe whether the inferred
angular coordinates are close to the real angular coordinates,
through generating synthetic directed networks. Specifically,
synthetic directed networks are created by following the
A-PSO model. Inferred angular coordinates are estimated by
the synthetic network and the embedding method. The
process can be summarized as follows:

Step 1: the expected degree «, ; is derived from the pdf
p(x,;) and obtained by using the Monte-Carlo
simulations

Step 2: the angular coordinates are sampled uniformly
at random from [0, 2]

Step 3: the synthetic directed network can be con-
structed by the connection probability and model
parameters

By doing this, the inferred angular coordinates are
computed by the embedding method, using the topological
information of synthetic directed networks. Inferred angular
coordinates and real ones can be compared by the scatter
plot [11]. The results illustrated that estimating coordinates
of set B perform well, as shown in Figure 6(a). Specifically,
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FIGURE 6: Testing the embedding method in synthetic networks. (a, b) Inferred angular coordinates vs. real ones for the 100 most connected
nodes in the synthetic hyperbolic network with 167 nodes. The exponents of power-law degree distribution (y,) are set as 3.5. The model

parameter f is set as 3.5. The average degree is set as 6.

the scatter points are gathered near two lines, which can be
spliced into a line after translation along the X-axis.
However, the scattered points in Figure 6(b) are disordered,
which shows that the estimation deviation of the node angle
in set A is large. The reason for this result is more likely
related to the process of node angle estimation and the
challenge of asymmetry.
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