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Quantifying the escape rate from a meta-stable state is essential to understand a wide range of dynami-
cal processes. Kramers’ classical rate formula is the product of an exponential function of the potential
barrier height and a pre-factor related to the friction coefficient. Although many applications of the
rate formula focused on the exponential term, the prefactor can have a significant effect on the escape
rate in certain parameter regions, such as the overdamped limit and the underdamped limit. There have
been continuous interests to understand the effect of non-detailed balance on the escape rate; however,
how the prefactor behaves under strong non-detailed balance force remains elusive. In this work, we
find that the escape rate formula has a vanishing prefactor with decreasing friction strength under the
strong non-detailed balance limit. We both obtain analytical solutions in specific examples and provide
a derivation for more general cases. We further verify the result by simulations and propose a testable
experimental system of a charged Brownian particle in electromagnetic field. Our study demonstrates
that a special care is required to estimate the effect of prefactor on the escape rate when non-detailed
balance force dominates. Published by AIP Publishing. https://doi.org/10.1063/1.5008524

I. INTRODUCTION

The escape phenomena from a meta-stable state driven
by noise serves as a generic model for a variety of dynamical
processes in physics,1–5 chemistry,6,7 and biology.8,9 The pio-
neering work by Kramers1 provides an analytical formulation
on the thermally activated barrier crossing. The results include
an exponential function of the potential barrier height, known
as the van’t Hoff-Arrhenius law,10,11 and a prefactor related to
the friction coefficient. Especially, the prefactor tends to van-
ish when the friction goes to both zero (underdamped limit)
and infinity (overdamped limit). This behavior demonstrates
that the prefactor can play a significant role in determining
the escape rate, and thus it requires a careful treatment on
the prefactor when calculating the escape rate under a certain
limit of physical parameters. Besides the dissipation caused by
friction, nonequilibrium systems typically shows breakdown
of detailed balance condition.12,13 Quantifying the effect of
non-detailed balance on the escape rate will lead to new under-
standings in a class of escape problems for nonequilibrium
systems.

It is a challenge to answer this question. First, the equilib-
rium Boltzmann-Gibbs distribution given by a priori poten-
tial function is generally absent.14 Second, the dynamical
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trajectories in phase space are governed by a nongradient drift
field. The non-detailed balance force may drive trajectories
to rotate around the attractor on a nearly closed orbit,15,16

while noise slowly moves the orbit up and down and finally
escapes the potential well. This is in contrast with the case
when detailed balance condition holds, where the trajectories
stochastically climb up and down the potential barrier with-
out oscillations as illustrated in Fig. 1. A previous study17

calculated the escape rate under a small non-detailed balance
force by treating it as a perturbation. The result shows that
non-detailed balance leads to a modification on the prefac-
tor in the rate formula. It remains elusive how the prefactor
behaves when such non-detailed balance force is strong and
the dynamics cannot be approximated by a perturbation.

In this paper, we study the escape problem for the
Langevin dynamics with a strong non-detailed balance. We
find that the prefactor in the escape rate formula tends to
zero under this limit, whereas directly applying the previous
rate formulas6,17–19 does not give such limiting behavior. For
the sake of better demonstration, we study a two-dimensional
escape problem, but the analysis is applicable to models of any
dimension. We analytically solve the escape rate for specific
examples and use simulations to verify the results. We then give
a derivation on the escape rate for general two-dimensional
Langevin dynamics under the current limit.

The current model can be realized by first taking the
zero-mass limit20,21 and then the strong non-detailed balance
limit in a real physical system. This operation is different
from directly taking the overdamped limit in a Langevin
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FIG. 1. Double-well potential and
escaping trajectories (red) under the
strong (a) and weak (b) non-detailed
balance limits are displaced. Energy
changes along the escaping trajectories
for (a) and (b) are shown in (c) and (d),
respectively. The weak non-detailed
balance model shows much larger
energy fluctuation than the strong
non-detailed balance model. For visu-
alization purpose, the initial position in
(a) was set to (q1, q2) = (�0.2, 0) so
that the initial energy is close to the
escape energy and “escape event” is
clearer to observe. Only one position
was plotted in every 1000 units of time
in (b) so that the trajectory is visible.
All the trajectories were recorded until
they hit the boundary q1 = 0 for the first
time. In [(a) and (c)], γ = 3.4 × 10�4,
dt = 10�5. In [(b) and (d)], γ = 10,
dt = 0.1. Other parameters used in both
cases are h = 1/

√
2, ε = 7.5 × 10�4,

B3 = 1, and q∗ = 0.1.

equation,22,23 where the strong non-detailed balance limit
could not be achieved afterwards. Indeed, this subtlety in the
order of taking the two limits is an obstacle for uncovering
the effects of strong non-detailed balance in general escape
problems. We show explicitly that the two limits can coexist.
Then, in light of Kramers’ method on studying the under-
damped Langevin dynamics,1 we transform the coordinates
in the position space to the energy-angular coordinate, which
enables us to obtain the analytical escape rate. We further pro-
pose an experimental system of a charged Brownian particle
in magnetic field to test our results.

In Sec. II, we describe the stochastic dynamics, study two
examples to demonstrate the result on the escape rate, and
then give a general derivation. In Sec. III, we show that com-
puter simulations validate the theoretical result on the escape
rate under the strong non-detailed balance limit. Then, we
demonstrate the zero-mass limit and propose an experimental
protocol to realize the system we studied in Sec. IV. In Sec. V,
we compare our result with the previous studies on the escape
rate formula and summarize the results. In Appendixes A and
B, we describe the transformation of the Fokker-Planck equa-
tion to the energy-angular coordinates. We additionally solved
the same model as in Example 1 except that the overdamped
limit is taken as reference.

II. THEORETICAL FORMULATION AND RESULT

We consider a model of two-dimensional Langevin
dynamics under zero-mass limit.24 A point particle with
q = (q1, q2) as the state vector is subject to a drift field
f(q) = (f 1(q), f 2(q)) and stochastic noise,

q̇ = f(q) + ξ(t), (1)

with q̇ as the time derivative. The Gaussian white noise obeys
〈ξ(t)〉 = 0, and 〈ξT (t)ξ(s)〉 = 2εDδ(t � s) with the average
taken with respect to the noise distribution and ε denoting
the Boltzmann constant multiplied by temperature kBT.13 The
diffusion matrix is chosen to be proportional to the identity
matrix, D = bI2, where I2 denotes the two-dimensional identity
matrix. For general constant diffusion matrix without singu-
larity, it can be transformed to an identity matrix by coordinate
transformation.

For the Langevin equation (1), the corresponding dynam-
ical process for the probability distribution ρ(q, t) is given by
the Fokker-Planck equation,

∂t ρ(q, t) = −
2∑

i=1

∂qi [fi(q)ρ(q, t)] +
2∑

i,j=1

εDij∂qi∂qj ρ(q, t). (2)

Note that the diffusion coefficient is constant (addictive noise).
For nonequilibrium systems without detailed balance, the

drift field is typically non-gradient: f(q) , �D∇qφ(q), where
φ(q) is the scalar potential function. Still, the drift force can
also be decomposed as25,26

f(q) = −D∇qφ(q) − Q∇qφ(q), (3)

where Q is an antisymmetric matrix corresponding to the
breakdown of the detailed-balance condition. The diffusion
coefficient D as the prefactor of the gradient term is imposed
by the fluctuation-dissipation theorem of second kind.27

We consider the case with constant matrices D and Q, and
thus there is no ambiguity on choosing the integration method
on Eq. (1), e.g., the Ito-Stratonovich dilemma.13,28,29 Then, by
using any stochastic integration, the Fokker-Planck equation
(2) is rewritten as25
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∂t ρ(q, t) =
2∑

i,j=1

[Dij + Qij]∂qi {[∂qjφ(q) + ε∂qj ]ρ(q, t)}. (4)

In order to clearly demonstrate the definition on the strong
non-detailed balance limit, we consider the case with D = bI2.
We also choose the antisymmetric matrix Q = aΩ1, where a
is a constant and Ω1 is a two-dimensional symplectic matrix.
Then, Eq. (4) can be simplified as

∂t ρ(q, t) =
2∑

i,j=1

Qij[∂qjφ(q)]∂qi ρ(q, t) + b
2∑

i=1

∂qi

× {[∂qiφ(q)]ρ(q, t) + ε∂qi ρ(q, t)}. (5)

The strong non-detailed balance limit is realized as b � a,
which corresponds to that the magnitude of non-detailed
balance force is much larger than the detailed balance part.

For more general cases, the way of defining a non-
strong detailed balance limit here can be extended. It should
be defined as that the magnitude of the antisymmetric part
Q∇qφ(q) in Eq. (3) is larger than that of the symmetric part
D∇qφ(q), with the latter negligible. This can be realized by
using a certain norm of matrices to quantify their relative mag-
nitude. In the following, we give the escape rate under the
strong non-detailed balance limit in specific examples.

A. First example

We first provide an example where we calculate ana-
lytically the rate formula under the strong non-detailed bal-
ance limit. This example has a piecewise double-well poten-
tial: φ(q1, q2) = h2(q1 + q∗)2/2 + q2

2/2, when q1 ≤ 0, and
φ(q1, q2) = h2(q1 − q∗)2/2 + q2

2/2, when q1 ≥ 0. The param-
eter h is constant denoting the “stiffness” of potential along
the q1 direction. The two potential wells W1 and W2 are
(�q∗, 0) and (q∗, 0) with q∗ > 0. The potential function is
harmonic around each well and is symmetric about the q2-
axis. A similar potential has been studied by Kramers for the
escape problem under a large friction limit in one dimension.1

As an example, given the diffusion matrix D = bI2, the drift
field in Eq. (1) is specified as




f1 = −b∂q1φ − aq2,

f2 = −b∂q2φ + ah2(q1 + q∗).
(6)

An experimental realization of the system is described below
[cf. Eq. (20)], where b → 0 corresponds to the strong non-
detailed balance limit.

Motivated by Kramers’ idea for studying an one-
dimensional particle in the momentum-position space in the
case of small viscosity,1 we describe the energy coordinate for
the two-dimensional equations (1)–(6). When the noise vari-
ation is small, i.e., in the limit b → 0, the Brownian force
only leads to a small perturbation on the energy of oscillation.
According to the fluctuation-dissipation theorem, the effect of
gradient drift field �D∇qφ(q) in Eq. (3) is also small. There-
fore, the particle dominately performs an oscillatory motion
under the non-detailed balance drift field. The energy gradu-
ally changes with the angles of oscillation as the slow variable.
Then, we introduce the energy coordinate system (E, θ) with
q1 =

√
2E/h2 cos θ − q∗, q2 =

√
2E sin θ. Note that φ(q1, q2)

= E inside the left well.

Next, we consider the average in the ring-shaped energy
surface area with E ≤ φ ≤ E + dE. We define the average
on this energy surface, A � ∫E≤φ≤E+dE AdS/ ∫E≤φ≤E+dE dS.

When the particle moves in the left well, we get ∂2
q1
φ + ∂2

q2
φ

= (h2 + 1), (∂q1φ)2 + (∂q2φ)2 = (h2 + 1)E. Then, we apply the
transformation for the moment function in the Fokker-Planck
equation when changing the coordinate30 as also detailed in
Appendix A and take the average over the energy surface to
Eq. (2). The transformed moment functions after taking aver-
age are f̄1 = (h2 + 1)(ε − E), D̄11 = (h2 + 1)E. Therefore, the
Fokker-Planck equation becomes

∂t ρ̄(E, t) = b(h2 + 1)∂E[E( ρ̄ + ε∂E ρ̄)]. (7)

The current density for the steady state is

w = −b(h2 + 1)εEe−E/ε∂E( ρ̄eE/ε ). (8)

We consider the escape problem that the particle start-
ing around the well W1 escapes out the well to another W2

through the saddle point S. Although escaping through any
point on the q2-axis is possible, all other points have higher
potential energy than the saddle q1 = q2 = 0. Our choice is
valid as argued by Kramers1 that points which are “shut-
tled” up to an energy larger than the saddle will immedi-
ately travel to the other potential well. We rewrite Eq. (8) as
weE/ε/E = −b(h2 +1)ε∂E( ρ̄eE/ε ) and integrate it between two
positions W1 and S in terms of the energy coordinate E, giving
w = b(h2 + 1)ε[( ρ̄eE/ε )nearW1 − ( ρ̄eE/ε )S]/[∫

S
nearW1

eE/ε/EdE].
We assume that particles leaving at saddle point S will prac-
tically never re-enter the well region around W1, which leads
to that ( ρ̄eE/ε )S = 0. Denoting ρ̄W1 � ( ρ̄eE/ε )nearW1 , we get
w ≈ b(h2 + 1)ε ρ̄W1 (∫

S
ε eE/ε/EdE)−1, where we have taken the

energy value near W1 as ε by assuming that the energy near
W1 is only due to fluctuation of noise. Since the main contri-
bution of the integral is from energy values that differ from ∆E
by a quantity with the same order of magnitude as ε , we may
take the energy value at position S corresponding to energy
difference ∆E between positions S and W1, ∫

∆E
ε eE/ε/EdE

≈ (1/∆E)e∆E/ε
∫

+∞
0 e−(∆E−E)/εd(∆E − E) = (ε/∆E)e∆E/ε ,

where we have extended the upper limit of integration from
∆E � ε ≈ ∆E to +∞ as a larger value does not contribute to the
integral.

The number of particles assembled near W1 is nW1

≈ ∫
+∞

0 dE ρ̄W1 e−E/ε ≈ ρ̄W1ε . Then, the escape rate formula
is obtained from the current divided by the particle density,

r =
w

nW1

≈ b
(h2 + 1)∆E

ε
e−∆E/ε . (9)

Note that when b → 0, the escape rate also tends to zero
(r→ 0). It implies that when the detailed balance part is finite,
the escape time goes to infinite as the strength of the diffusion
coefficient (noise variation) converges to zero in Eq. (1).

We test the limiting behavior of rate formula Eq. (9) by
simulations. In Fig. 2, the match between the numerical simu-
lation and theoretical prediction becomes better and eventually
coincide when the friction coefficient γ →∞ or the magnetic
intensity B3 → 0, corresponding to b→ 0 in Eq. (9). Besides,
we find that the simulation time gets longer when b → 0,
which indicates that the most probable escape path is longer.
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FIG. 2. Simulated (solid) and analyti-
cal (dashed) escape times with vary-
ingfriction coefficient γ [(a) and (b)] or
varying magnetic intensity B3 [(c) and
(d)] under the strong [(a) and (c)] and
weak [(b) and (d)] non-detailed balance
limits. A number of 10 000 simulations
were performed for eachγ, and the aver-
age of the 10 000 escape times is plot-
ted. B3 is fixed to 1 in [(a) and (b)]
while γ is fixed to 1 in [(c) and (d)].
Other parameters used in all cases are
ε = 7.5 × 10�4, dt = 3.3 × 10−6

+ 10−3 sin( π4 |
q1
q∗ |), h = 1/

√
2, and

q∗ = 0.1.

In Fig. 3, we illustrate how the most probable escape path
depends on the parameters, which is a salient feature of sys-
tems without detailed balance. This supports the observation
by Landauer that the escape rate is dependent on kinetics along
the path connecting steady states when detailed balance breaks
down.31

B. Second example

As another example, we study the system




q̇1 = −a∂q2φ,

q̇2 = a∂q1φ − b∂q2φ + ξ(t),
(10)

with 〈ξ(t)〉 = 0 and 〈ξT (t)ξ(s)〉 = 2εbδ(t � s).

FIG. 3. Simulation shows that the characteristic of the most probable escape
path, e.g., the number of “circles” in Fig. 1(a), depends on the parameter b
corresponding to the relative magnitude between non-detailed balance and
detailed balance parts. Under the strong non-detailed balance limit, e.g.,
b → 0, the particle would undergo a number of “circles” around the val-
ley state (�0.1, 0) before finally escaping as shown in Fig. 1(a). The expected
number of circles increases with relatively larger non-detailed balance force
as b becomes smaller. The statistics here are obtained by averaging over
10 000 simulated trajectories for each b.

This system can be exactly mapped to the phase space with
the momentum coordinate p→ q1 and the position coordinate
q → q2 in Ref. 1 for the underdamped case. Therefore, the
techniques used there can be directly applied here to get the
rate formula. We emphasize that although the techniques are
the same, the problem considered here is a totally different
case: the present equation (10) is a Langevin system under the
zero mass limit, whereas the mapping to the energy-angular
coordinate in Ref. 1 is for the case under the underdamped
limit.

For this system, we can study the escape problem under
general smooth potential functions. We consider a potential
function with double well in the q1 direction,

φ(q1, q2) =
1
2

q2
2 −

1
2

q2
1 +

1
4

q4
1. (11)

By introducing the energy coordinate E � φ(q1, q2), we obtain
the Fokker-Planck equation for Eq. (10) as

∂t ρ̄ = b∂q2 [(∂q2 E)( ρ̄ + ε∂E ρ̄)]

= b∂q2 [q2( ρ̄ + ε∂E ρ̄)]

= b[( ρ̄ + ∂E ρ̄) + q2
2∂E( ρ̄ + ε∂E ρ̄)]. (12)

Denote the area inside a ring-shaped energy by I(E) =
∮

q2dq1

and the fraction of the ensemble lying inside this ring-
shaped area dI by q2dI . The frequency ω is given by ω

= dE/dI and we have q2
2 = Iω. After taking the average

over the energy surface, i.e., for any quantity A the average
A � ∫E≤φ≤E+dE AdS/ ∫E≤φ≤E+dE dS, we obtain the Fokker-
Planck equation as

∂t ρ̄ = b[( ρ̄ + ε∂E ρ̄) + q2
2∂E( ρ̄ + ε∂E ρ̄)]

= b[(1 + Iω∂E)( ρ̄ + ε∂E ρ̄)]

= b∂I ( ρ̄I + εI∂I ρ̄), (13)

which has the same form of the Fokker-Planck equation as that
in Ref. 1. Therefore, we directly apply the result here and get



064102-5 Tang, Xu, and Ao J. Chem. Phys. 148, 064102 (2018)

the escape rate,

r ≈ b
∆E
ε

e−∆E/ε , (14)

where ∆E is the potential difference between the stable point
W1 and the saddle point S. This result is consistent with that
obtained for Eq. (6) under the strong non-detailed balance
limit.

C. General case

We provide a derivation to reach the rate formula for gen-
eral equation (1) under the limit of b→ 0. Though we consider
a two-dimensional case here, the method can be applied to
higher-dimensional systems under the same limit. Following
the procedure in the above example, we change the coordi-
nates to the energy coordinate E and the angular coordinate θ.
We first make coordinate transformation on the corresponding
Fokker-Planck equation (2), with the detailed derivation given
in Appendix A. Then, conduct an average along a ring-shaped
energy surface by integrating θ on the surface. The terms with
∂θ are equal to zero due to periodicity on θ. We thus obtain a
Fokker-Planck equation,

∂t ρ̄(E, t) = b(−∂E f̄1 + ε∂2
ED̄11) ρ̄(E, t), (15)

where for any quantitative A the symbol Ā � ∫ E ≤φ ≤E+dEAdS/
∫ E ≤φ ≤E+dEdS denotes the average density over the cho-
sen energy surface. The transformed moment functions after

average are f̄1 = −(∂q1 E)2 − (∂q2 E)2 + ε(∂2
q1

E + ∂2
q2

E) and

D̄11 = (∂q1 E)2 + (∂q2 E)2. Note that Eq. (15) is of the same
form as the Fokker-Planck equation under the energy-diffusion
approximation in Ref. 2.

The steady state current is

w = b(f̄1 − ε∂ED̄11) ρ̄(E, t). (16)

Then, we introduce ∫
E′′[f̄ (E ′)/D̄11(E ′)]dE ′ = −φE(E ′′) to

define a potential function in energy coordinate φE with
∆φE ≈ φE(ES) � φE(0). By applying boundary condition
ρss(ES) = 0, we get the reduced steady state solution,

ρss(E) = w/[bεD̄11(E)] exp[−φE(E)/ε]

×

∫ ES

E
exp[φE(E ′′)/ε]dE ′′. (17)

The particle density around the well W1 is nW1

� ∫
ES

0 ρss(E)dE. Then, the escape rate by dividing the current
divided with the particle density is obtained,

r � w/nW1 = b
{ ∫ ES

0

1

εD̄11(E)
exp

[ ∫ E f̄ (E ′)

εD̄11(E ′)
dE ′

] ∫ ES

E
exp

[
−

∫ E′′ f̄ (E ′)

εD̄11(E ′)
dE ′

]
dE ′′dE

}−1

= b
{ ∫ ES

0

1

εD̄11(E)
exp[−φE(E)/ε]

∫ ES

E
exp[φE(E ′′)/ε]dE ′′dE

}−1

≈ bD̄11(E∗)
{ ∫ ES

0
exp[−φE(E)/ε] exp(−∆φE/ε)dE

}−1

≈ (bD̄11(E∗)/ε) exp(−∆φE/ε), (18)

where we have used the definition on the potential func-
tion. From the third line to the fourth line, the main contri-
bution of the integral exp[−φE(E)/ε] ∫

ES
E exp[φE(E ′′)/ε]dE ′′

comes from E ≈ 0, and thus we have applied the approx-
imation ∫

ES
E exp[φE(E ′′)/ε]dE ′′ ≈ ∫

ES
0 exp[φE(E ′′)/ε]dE ′′

≈ exp(∆φE/ε)/ε . Besides, we have approximated the diffu-
sion coefficient as D̄11(E∗) with E∗ ∈ (0, ES]. When b → 0,
the transition rate r → 0. This is consistent with the above
analytical result obtained in the two examples.

III. SIMULATION DETAILS

We used Euler’s method to simulate Eqs. (6). Ten-
thousand tests were run for each parameter set with initial
condition q1(t0) = q∗ = �0.1. Each simulation keeps running
until q1(tFPT) ≥ 0 for the first time at some tFPT, which denotes
the first passage time (FPT). The mean FPT (MFPT) is then
calculated from the 10 000 FPTs. Note that in the case of weak
non-detailed balance (overdamped limit), the MFPT is multi-
plied by 2 before comparing to the analytical escape time since
a particle will quickly fall into a local stable state after cross-
ing the separatrix q1 = 0 and “the probability of crossing the
separatrix in either direction equals one half.”2 In the case of

strong non-detailed balance, however, the particle will stay rel-
atively stable on the equi-potential surface and frequently cross
the separatrix. The steady escape flow is immediately estab-
lished after the first passage and there is no need to multiply a
factor 2.

In the simulations, the escape time results are found to be
very sensitive to the value of dt as γ → 0, which is possibly
caused by the sensitivity of the barrier-crossing behaviors near
the boundary q1 = 0. We choose an adaptive step size,

dt = 10−6 + 10−3 ∗ sin
(
π

2
·

����
q1

0.2

����

)
. (19)

As a result, when the particle is close to the boundary, the
time step is as small as 10�6. When it is farther away, the time
step becomes as large as 10�3.

IV. EXPERIMENTAL REALIZATION

We consider the system of a charged Brownian particle
moving along a two-dimensional potential energy surface with
the presence of a magnetic field.12,32,33 The forces acted on the
particle include the friction force, the Lorentz force due to the
magnetic field, the potential gradient, and the noise. According
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to Newton’s 2nd law, the dynamical equation is given by

mq̈ = −γq̇ + eB × q̇ − ∇qφ(q) + ζ(t), (20)

where the constants γ, m, and e denote, respectively, the
friction coefficient, mass, and charge of the particle. The
Lorentz force is eB × q̇, and φ(q) corresponds to the elec-
trostatic potential. The Gaussian white noise obeys 〈ζ(t)〉
= 0 and 〈ζT (t)ζ(s)〉 = 2εSδ(t � s). The friction matrix is
chosen to be proportional to an identity matrix, S = γI2.
The noise correlation measured by the friction coefficient is
imposed by the fluctuation-dissipation theorem of the first
kind.27

In the zero-mass limit m→ 0, Eq. (20) becomes

γq̇ − eB × q̇ = −∇qφ(q) + ζ(t). (21)

As an example of theoretical and experimental implementa-
tion of such limits, we refer interested readers to Refs. 20 and
34. We then proceed to rewrite the term of Lorentz force as
eB×q̇ = Aq̇, where A is an antisymmetric matrix. This term can
induce a circular current, indicating the breakdown of detailed
balance.12

The conservation of the Lorentz force also implies that
the non-detailed balance condition does not necessarily imply
dissipation of the system. The presence of the Lorentz force can
induce a circular current, indicating the breakdown of detailed
balance.

We specify the magnetic field to be perpendicular to
the plane of the particle’s trajectory by choosing eB � (B1,
B2, B3) with B1 = B2 = 0. By introducing the coefficient
b � γ/(γ2 + B2

3), a � −B3/(γ2 + B2
3), Eq. (21) becomes

the example given by Eqs. (1)–(6). Then, the result Eq. (9)
demonstrates that for the system of a charged Brownian par-
ticle with a finite magnetic field under the zero mass limit in
Eq. (21), the escape time is infinite when the friction goes to
zero, which is consistent with the physical situation that the
particle only under Lorentz force will oscillate with conserved
energy.

Next, we propose an experimental scheme for the case
discussed in Sec. II. Realizing the limit of b→ 0 in Eqs. (1)–(6)
requires m/ts � γ � B3, which leads to b ≈ γ/B2

3, a ≈ �1/B3.
We consider a Brownian particle moving in an air chamber.
First, as the density of oxygen is 1.429 kg/m3, we can use a
particle with mass density ρ = 1.5 kg/m3. If we choose particle
size R = 10�4 m, the particle’s mass is m = ρ(4/3)πR3 ≈ 6.3
× 10�12 kg. Second, the viscosity of air is 1.81 × 10�5 Pa s,
and thus the friction coefficient γ ≈ 6πηR = 2.8 × 10�8 kg/s.
Third, if we take surface charge density σ = 0.5 C/m2,35,36 the
total charge of the particle is e = 4πR2σ ≈ 6.3 × 10�8 C. If
adding the external magnetic field B = 10T, which is achievable
based on the current laboratory condition, B3 = eB = 6.3× 10�7

kg/s. Fourth, we take the sampling time to be ts ≤ 10 ms as
in the experiment.34 Therefore, during sampling, the particle
has already relaxed to equilibrium and is effectively subject to
zero total force, which leads an effective mass of zero.24 As a
result, the condition m/ts � γ � B3 is satisfied. Since B3 is
an order of magnitude larger than γ, a is also larger than b in
Eqs. (1)–(6), which corresponds to taking the limit of b→ 0.
Larger magnetic field can improve realizing the limit, which
is the case used in our computer simulations.

V. DISCUSSION

The construction of the Langevin model above depends
crucially on the order of taking the two limits. We first take
the zero mass limit and then the strong non-detailed balance
limit. The zero-mass limit has been studied with mathematical
rigor.20,21,37,38 It originates from a treatment on reducing the
2N-dimensional Klein-Kramers equation to a N-dimensional
Fokker-Planck equation,20 where parameters of friction and
non-detailed balance are finite. If taking the overdamped limit
first, one implicitly chooses friction to be infinity. Thus, one
cannot generally change the order of taking the two limits,
except for the one-dimensional case.21 In this manuscript, we
have provided an experimental scheme to realize the zero mass
limit.

Besides the experimental realization proposed above,
models under the strong non-detailed balance limit have been
studied in the context of magnetic moment of a single-domain
ferromagnetic particle by the Langevin equation in Gilbert’s
form.39,40 Both their experimental and theoretical estimates
yield small values of friction coefficient.41,42 They also found
that the rate formula goes to zero when dissipation becomes
small, which is consistent with the present result. Compared
with their studies directly starting from a Langevin dynam-
ics without mass, ours is reached by a careful treatment of
ordering the limits of zero mass and strong non-detailed bal-
ance in the original Langevin dynamics. To our knowledge,
the necessity of first taking the zero mass limit is for the first
time articulated. The procedure will be useful for classify-
ing the role of non-detailed balance on escape phenomena for
general stochastic dynamics. Besides, here we investigate the
effect of non-detailed balance on the escape rate for nonequi-
librium systems, which is different from these previous studies
focusing on magnetic moment.

For the general Langevin dynamics equation (1), a poten-
tial function governing the dynamics can be constructed25

through the decomposition Eq. (3) given in Appendix A.
Based on the potential function constructed and the decompo-
sition, we can proceed to derive the rate formula for nonequi-
librium systems without detailed balance, which we have
achieved under the strong non-detailed balance limit. Instead,
the WKB approximation18,43 relies on the existence of quasi-
stationary spatial distribution ρ(q, t).44 It only applies to one-
dimensional nonequilibrium system and higher-dimensional
system reducible to one-dimension or have detailed balance
(see p. 301 in Ref. 2). However, this is not the case in the cur-
rent two-dimensional nonequilibrium system without detailed
balance.

Below, we compare our results with the previous gener-
alizations on Kramers’ rate formula. We demonstrate that for
our example Eq. (6) the previous formulas for the overdamped
case could not give the infinite escape time under the limit of
γ → 0.

1. The Eyring formula for the first mean passage time was
obtained in Ref. 6,

τ ∝
2π
λ∗+

√
| det Hessφ(qS)|

det Hessφ(q1)
exp(∆φ/ε), (22)
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where Hess denotes the Hessian matrix of the potential
function at different positions and −λ∗+ is the negative
eigenvalue of the Hessian matrix at the saddle point S.

For our example, Eq. (6), in the left potential well,
the Hessian matrix is

Hessφ =

(
h2 0
0 1

)
. (23)

It is impossible to get the Hessian matrix at the sad-
dle point where the potential function is continuous but
not differentiable. Even so, the prefactor in Eq. (22) is
just related to the potential function and does not depend
on the friction constant. Therefore, it could not produce
the asymptotic behavior that the escape rate goes to zero
under the strong non-detailed balance limit.

2. A generalized Eyring formula was provided in Ref. 18,

τ ∝
2π
λ∗+

√
| det Hessφ(qS)|

det Hessφ(q1)
exp

( ∫ +∞

−∞

F(ρt)dt
)

× exp(∆φ/ε), (24)

where the correction term exp
(
∫

+∞
−∞ F(ρt)dt

)
with

respect to Eq. (22) involves the integral of the function
F along the most probable path (qt)t∈R (see the detailed
formula in Ref. 18). Similarly, this generalized formula
still cannot give a prefactor, which leads to zero escape
rate when friction goes to zero.

3. In Ref. 17, the authors treated the breakdown of detailed
balance as a perturbation and therefore their rate for-
mula does not become zero when the friction goes small.
Specifically, Eq. (30) in their result is

K̇/K = −u1 − Dq2 f2, (25)

and for our example u1 = �b/m, Dq2 = b. Then,

ḟ2 = −2Dq2 f 2
2 − 2u1f2 + 2v0v2/Dq1 = −2bf 2

2 + 2(b/m)f2,
(26)

with v0 = mω2 and v2 = 0. Thus, their formula about the
modification on the prefactor cannot give zero escape rate
under the strong non-detailed balance limit.

4. Besides, directly applying the results in Ref. 19, i.e., Eqs.
(3.37) and (4.13) under the strong non-detailed balance
limit, cannot produce that the escape rate r → 0.

5. Furthermore, a series of previous work studied the escape
problem with detailed balance condition violated. For
example, the distribution of the exit position was inves-
tigated in Ref. 45 with employing the construction on
quasi-potential. Also, the studies in Refs. 46 and 47 focus
on the optimal escape path and the prehistory probabil-
ity distribution of the escape paths. Besides, the mean
first passage time was calculated in Ref. 48 by using the
WKB approximation and solving the Hamiltonian-Jacobi
equation to get the steady state distribution. Finally, a
prefactor depending on the noise strength was obtained in
Ref. 49.
We note that there are two main differences between
these studies and ours. First, our result gives an escape
rate formula with a prefactor converging to zero under
the strong non-detailed balance limit, and this prefactor
explicitly depends on the physical parameters of friction

and magnetic field. However, the previous studies men-
tioned above do not generate a prefactor with the similar
property. Second, we reach the rate formula by employing
a decomposition Eq. (3) on the dynamics. The potential
function constructed through the decomposition makes
it possible to directly apply the energy-diffusion method
to such strong non-detailed balance systems. It leads
to a clear-cut classification on the role of non-detailed
balance force and detailed balance part to the escape
rate. On the other hand, the previous studies mainly use
the WKB approximation to get the potential function,
which may not enable to define the strong non-detailed
balance limit. Besides, we have demonstrated that the
equivalence between the quasi-potential and the poten-
tial function constructed here achieves only in the small
noise limit.50,51

VI. CONCLUSION

In conclusion, we have shown how the escape rate can
be calculated for the stochastic dynamical system dominated
by non-detailed balance force. The resulted rate formula has
a prefactor that approaches zero under the strong non-detailed
balance limit. The Langevin description of such a process
can be obtained by first taking the zero-mass limit and then
the strong non-detailed balance limit of a realizable physical
model. We have also provided an experimental implementa-
tion of this model in an electromagnetic system. Our study
serves as a first step towards investigating the escape problem
beyond a small non-detailed balance limit and can motivate
further studies on the escape rate for nonequilibrium systems
without detailed balance.
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APPENDIX A: FOKKER-PLANCK EQUATION
IN THE ENERGY-ANGULAR SPACE

We describe here the coordinate transformation in two-
dimensional systems here as an example. For the stochastic
dynamics under the same limit, the method can be applied
to high dimension without loss of generality. We first intro-
duce the energy coordinate system and perform coordinate
transformation on the Fokker-Planck equation. Specifically,
E = φ(q1, q2) and θ = θ (q1, q2) where E denoting the potential
energy value is the energy coordinate and θ is the angular
coordinate. The coordinate transformation for the Fokker-
Planck equation is given by Ref. 30. For a two-dimensional
Fokker-Planck equation (2), the transformed Fokker-Planck
equation is

∂t ρ̃(q̃1, q̃2, t) =
[
−

∑
k

∂q̃k f̃k +
2∑

k,r=1

ε∂q̃k∂q̃r D̃kr

]
ρ̃(q̃1, q̃2, t),

(A1)
with the transformation on the moment functions
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f̃k =
∂q̃k

∂qi
fi +

∂2q̃k

∂qi∂qj
Dij, (A2)

D̃kr =
∂q̃k

∂qi

∂q̃r

∂qj
Dij, (A3)

ρ̃ = J ρ. (A4)

In the original coordinate system, the moment functions
are

f1 = −∂q1 E, f2 = −∂q2 E, B = I2. (A5)

Then, we get the transformed moment functions

f̃1 = −(∂q1 E)2 − (∂q2 E)2 + ε(∂2
q1

E + ∂2
q2

E), (A6)

f̃2 = −∂q1θ∂q1 E − ∂q2θ∂q2 E + ε(θxx + θyy), (A7)

D̃11 = [(∂q1 E)2 + (∂q2 E)2],

D̃12 = (∂q1 E∂q1θ + ∂q2 E∂q2θ) = D̃21,

D̃22 = (∂q1θ
2 + ∂q2θ

2), (A8)

ρ̃ � J ρ =
1

∂q1 E∂q2θ − ∂q2 E∂q1θ
ρ. (A9)

Therefore, Eq. (5) is transformed to be

∂t ρ̃(E, θ, t) = −a∂θJ−1 ρ̃(E, θ, t) + b
[
− ∂E f̃1(E, θ)

− ∂θ f̃2(E, θ) + ∂2
ED̃11(E, θ) + 2∂E∂θD̃12(E, θ)

+ ∂2
θ D̃22(E, θ)

]
ρ̃(E, θ, t).

(A10)

We next conduct an average procedure similar to that in
Ref. 1. We integrate θ on a closed equal energy surface, the
terms with ∂θ equal to zero due to periodicity on θ. We thus
obtain the Fokker-Planck equation (15).

APPENDIX B: OVERDAMPED LIMIT FOR THE FIRST
EXAMPLE

In order to verify that the simulation can successfully
match the theory under the overdamped limit, we also study
Eq. (6) in this limit by choosing a = 0 and b→∞. The system
becomes




q̇1 = −
1
γ
∂q1φ + ξq1 (t),

q̇2 = −
1
γ
∂q2φ + ξq2 (t),

(B1)

where the two equations are now decoupled. Thus, we only
need to study the escape problem on the q1-dimension. Then,
the classical Kramers’ formula1,2 can be applied. For clarity,
below we briefly review the derivation in our system.

The stationary probability current is

w � −
[
(
1
γ
∂q1φ)ρ +

1
γ
ε∂q1 ρ

]
= −

1
γ
εe−φ/ε∂q1 (ρeφ/ε ). (B2)

It can be rewritten as

weφ/ε = −
1
γ
ε∂q1 (ρeφ/ε ). (B3)

We do integration between the two points on the q-
coordinate around the well W1 to the saddle point S and
get

w
���
S

W1
= −

1
γ
ε(ρeφ/ε )���

S

W1

( ∫ S

W1

dq1eφ/ε
)−1

. (B4)

We assume that in a quasi-stationary state no particle has prac-
tically arrived at S. Also, near W1, thermal equilibrium has
practically been established. Thus we have

w
���
S

W1
=

1
γ
ε ρW1

( ∫ S

W1

dq1eφ/ε
)−1

, (B5)

where ρW1 � (ρeφ/ε )W1 .
We further assume that the potential function φ near W1

can be approximated by a quadratic form and then the number
nW1 of particles near W1 is

nW1 =

∫ +∞

−∞

dq1ρW1 e−h2(q1+q∗)2/2ε = ρW1

√
2πε

h2
. (B6)

The reaction velocity r = w/nW1 , which denotes the chance in
unit time that a particle starting from W1 escapes to S. As a
result, it is denoted by

r =
w

nW1

=
1
γ

√
h2ε

2π

( ∫ S

W1

dq1eφ/ε
)−1

. (B7)

For the potential barrier, we have the first order approxi-
mation∫ S

W1

dq1eφ/ε = 2e∆E/ε
∫ +∞

0
d(q1 − qS)e−h2(qS+q∗)(q1−qS)/ε

=
2ε

h2(qS + q∗)
e∆E/ε =

2ε

h
√

2∆E
e∆E/ε , (B8)

where we have extended the upper limit of integration to +∞
as larger values do not contribute to the integral.

Finally, the rate formula under the overdamped limit
γ →∞ is

r =
h2

γ

√
∆E
4πε

e−∆E/ε . (B9)

This implies that the escape time goes to infinite when the
friction coefficient becomes sufficiently large in Eq. (1). We
have checked this rate formula for the overdamped limit by
computer simulations as well (Fig. 2).
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