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The technology of single-cell RNA sequencing (scRNA-seq) 
enables the dissection of each heterogeneous cell and its tran-
scriptome profile within a tissue, organ or organism1,2. Many 

studies, such as Human Cell Atlas, have demonstrated the power 
of scRNA-seq to enable unprecedented views of cell types or states. 
The recent rapid accumulation of scRNA-seq data makes it pos-
sible to assign each single cell a label that records cell-type identity, 
developmental stage3,4, spatial position5,6 or another biological fea-
ture of the cell. To meet the requirement of cell-type labelling, sev-
eral bioinformatics algorithms for single-cell transcriptome analysis 
have been developed7–11. For example, Seurat assigns distinct iden-
tity tags to cells by clustering scRNA-seq data12,13 and Moana con-
structs cell-type classifiers from heterogeneous scRNA-seq datasets 
under a hierarchical machine learning framework14. Approaches 
such as canonical correlation analysis (CCA) and mutual near-
est neighbours (MNN) realize the batch merging of datasets for 
effective recognition of rare cell states12,15. The existing supervised 
or unsupervised learning methods embody a robust, quantitative, 
expression-based definition of cellular identity. However, feature 
selection to reveal how the classifiers produce each labelling result 
for a single cell is required. Some preliminary analysis of differ-
ential gene expression and co-expression modules has attempted 
to extract transcriptome features from groups of single cells with 
the same cell type12,13. Unfortunately, the genes obtained were still 
inadequate to explain the gene expression programs that could 
determine the cell-type labelling for each single cell. In particu-
lar, why a single cell is labelled to be a certain cell type is not clear  
because of the lack of interpretability in the ‘black box’ machine 
learning models16.

Deep learning neural networks, as state-of-the-art machine 
learning models, have been used in many successful implementa-
tions. These networks typically have the ability to extract insights 
from biological data as well as image data17–21. However, traditional 
deep learning network architecture still lacks transparency in the 
decision-making process22–24. This black box problem has always 
blurred the interpretability of deep networks, even though the recent 
advances have introduced a ’capsule structure“ into the hidden layer. 
A capsule structure is defined as a neuron vector representing a set 
of properties of a specific object25. The flexible modular architecture 
of capsule networks, being composed of capsules in interconnected 
modules, provides the possibility of opening the black box of deep 
learning and enabling us to interpret complex biological networks17.

Here, we have designed an interpretable deep-learning architec-
ture of capsule networks (scCapsNet) and made the decision-making 
black box transparent by analysing internal weight parameters 
among capsule structures. We evaluated the values assigned by 
scCapsNet for single-cell transcriptome analysis using multiple 
scRNA-seq datasets, such as mouse retinal bipolar cells (mRBC) 
data and human peripheral blood mononuclear cells (hPBMC) data. 
We used two-dimensional principal component analysis (PCA) on 
the internal weight parameters in the feature extraction layer to 
properly define a set of core genes; this set enables the identification 
of groups of single cells with same cell type. In addition, the inter-
nal weight parameters in the model effectively embed the single-cell 
expression profile into a low-dimensional vector for each gene. The 
vector contains both informative gene-expression signatures and 
properties of cell-type labelling contributed by knowledge of the 
gene. Thus, the core gene regulatory modules in which genes are 
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closely relevant in function but present distinct transcript expres-
sion patterns can be recognized in the form of a tiny, tight cluster of 
embedded vectors.

Results
The architecture of capsule network model and its performance 
for single-cell type recognition. In our deep learning model scCap-
sNet to enable single-cell type recognition, we designed the archi-
tecture to consist of the feature extraction module and the capsule 
network module (Fig. 1a). Instead of the convolutional kernels in a 
traditional capsule network, multiple parallel fully connected neural 
networks play the part of the feature extractor in the feature extrac-
tion module (Fig. 1a). These neural networks convert the input 
of the single-cell RNA expression profile into ‘primary capsule’  

vectors through weight matrices and a rectified linear unit (ReLU) 
activation function. Then, in the capsule networks, the features 
are delivered from the primary capsules to the next ‘type capsule’  
vectors for cell-type recognition by iterative dynamic routing  
(Fig. 1a). The coupling coefficient matrices in the hidden layer rep-
resent the mathematical contributions of the primary capsules to 
the type capsules (see Methods for the details).

The scRNA-seq data of hPBMCs and mRBCs from 10x Genomics 
and Drop-Seq26 platforms were used to evaluate the performance 
of the scCapsNet model in single-cell-type recognition27,28. The 
shuffle-split cross-validation and prediction results reveal that the 
model has a powerful recognition ability of up to 99% and 97% 
accuracy for the two scRNA-seq datasets, respectively. We further 
demonstrate the effectiveness of the scCapsNet model by comparing  
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Fig. 1 | The architecture of scCapsNet and its cell-type-recognition characteristics. a, Two-layer architecture of scCapsNet. The first layer consists 
of l parallel fully connected neural networks for feature extraction from the inputs of single-cell gene expression. The primary capsule of vector ui is 
the output of the neural network i. The subsequent layer is a Keras implementation of capsule networks for classification. The parameters of coupling 
coefficients express the mathematical contributions of the primary capsules to the type capsules for cell-type recognition. The length of each type capsule 
vj represents the probability of single cell x belonging to the corresponding cell type. b, The performance for single-cell type recognition in the scCapsNet 
model. With hPBMC and mRBC scRNA-seq data, the cell-type prediction accuracies in five replicates were compared with other algortithms: neural 
network, support vector machine (SVM), random forest, linear discriminant analysis (LDA) and nearest neighbour. The box-and-whisker plots draw by 
boxplot from R show the prediction accuracies in five replicates of each method. c, The rejection option evaluation in the unseen population experiment on 
the scCapsNet, SVMrejection and LDArejection models. The column labels of the heatmap represent the three sub-tasks in the unseen population experiment: 
the one with removed T cells, the one with removed CD4+ T cells, and the one with only the CD4+/CD45RO+ memory T cell subpopulation removed 
from the training set. The heatmap shows the recognition rates of the unlabelled single cells that are not seen during training. d, Heatmaps of the matrices 
of average coupling coefficients for the hPBMC dataset. The heatmaps represent the average coupling coefficient matrix for the single B cells, CD14+ 
monocytes, CD4+ T cells, CD8+ T cells, dendritic cells, FCGR3A+ monocytes, megakaryocytes and natural killer (NK) cells. For each heatmap, the row 
represents type capsules and the column represents primary capsules. e, Overall heatmap of the combined matrix of average coupling coefficients. The 
combined matrix contains the effective type capsule row in Fig. 1d where its recognition type is in accordance with the type of single cells input.
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it with other algorithms, such as the black box neural network, SVM 
and random forest, using the same scRNA-seq data (Fig. 1b). The 
evidence supports the conclusion that the scCapsNet method is 
suitable for single-cell-type labelling with competitive recognition 
accuracy. Besides our original hPBMC dataset we selected a differ-
ent hPBMC dataset from the 10x Genomics platform11,29. The mod-
els were trained using one dataset and then evaluated using another 
dataset. The result in Extended Data Fig. 1a shows that scCapsNet 
is the top-performing classifier for this task. We also tested the clas-
sification performance among different models across four human 
pancreatic cell datasets from different single-cell RNA-seq proto-
cols. These four datasets were those used in Abdelaal et al.11,30–33. 
The recognition accuracies in Extended Data Fig. 1b correspond to 
four sub-tasks, in each of which one of the four datasets was used as 
a test set and the other three datasets were used as training sets. The 
result suggests that scCapsNet has stable performance of single-cell 
type recognition in new scRNA-seq datasets.

In a realistic scenario for scRNA-seq data analysis, some single 
cells have unknown cell-type labels and remain unassigned. The 
subcellular-type recognition model should incorporate a rejec-
tion option evaluation to test whether the classifiers indeed leave 
these single cells unlabelled. The rejection option evaluation can be 
implemented using an unseen population experiment and a nega-
tive control experiment11. In the unseen population experiment, the 
classification model is first trained on labelled cell subpopulations 
from one dataset. A group of differently labelled cells in the same 
dataset, that are not seen during training, are then used in the test 
set for rejection. In the negative control experiment, the classifiers 
are used to predict the single-cell types of one tissue after training 
on a dataset from a different tissue.

Our scCapsNet model includes a rejection option by setting a 
threshold of 0.9 to the maximum probability in the output process 
of cell-type identification. The maximum probability above the 
threshold determines the cell type that the input single cell belongs 
to. When the maximum probability value is lower than the thresh-
old, scCapsNet triggers the rejection option and classifies the input 
single cell as unlabelled. We used the same datasets and sub-tasks 
as in Abdelaal’s benchmark paper in the unseen population experi-
ment and the negative control experiment for the rejection option 
evaluation on scCapsNet, the SVMrejection and LDArejection methods. 
The three sub-tasks in the unseen population experiment were the 
one with removed T cells, the one with removed CD4 + T cells, and 
the one with only the CD4 + /CD45RO + memory T cell subpopu-
lation removed from the training set11,27. The result demonstrates 
that scCapsNet has a stable and much improved rejection option 
performance in all three sub-tasks, whereas the SVMrejection and 
LDArejection methods fail in at least one sub-task (Fig. 1c). In a real-
istic scenario for scRNA-seq data analysis, it is important that the 
algorithm is able to discover a novel cell subgroup in which previ-
ously known cell-type labels are unassigned to the single cells. In 
the unseen population experiment, scCapsNet recognizes almost 

80% of the unlabelled single cells that are not seen during training. 
This result suggests that if the scRNA-seq dataset has an unknown 
cell subgroup, scCapsNet could distinguish it clearly from many 
known subcellular types. The negative control experiment contains 
two groups of datasets, the group of human cell datasets of PBMC 
and pancreas tissues, and the group of mouse cell datasets of visual  
cortex and pancreas tissues11,27,30,34. As desired and expected,  
scCapsNet rejects close to 100% of the negative control cells 
(Extended Data Fig. 1c).

Interpretable characteristics in primary and type capsules rela-
tive to cell type recognition. The coupling coefficients for each 
single cell are available in the well trained scCapsNet model using 
hPBMC scRNA-seq data. They are weight values representing the 
contribution of the primary capsules to the type capsules. We cal-
culated the matrices of average coupling coefficients for the single 
cells with the same cell-type label, as shown in the eight heatmaps 
(Fig. 1d) (see Methods for the detailed calculation of average cou-
pling coefficients). Here we give an example to explain the meaning 
of the brightness of the element at row 3 (CD4 + T cell row) and 
column 2 in the first heatmap (Fig. 1d). This brightness value mea-
sures the contribution to the CD4+ T cell recognition of the features 
extracted from the transcriptome of single B cells by the second pri-
mary capsule. The meanings of the brightness for other elements in 
the heatmaps are similar. This first heatmap exhibits an interesting 
pattern: that the matrix of average coupling coefficients for the B 
cells has one or very few very-high-value elements in only the B-cell 
type capsule row. Other heatmaps follow a similar pattern (Fig. 1d). 
This pattern demonstrates that primary capsules effectively extract 
informative features from single cells with the same cell-type label, 
which is responsible for recognition of the cell type. Following this 
pattern, the effective type capsule row whose recognition cell type 
is in accordance with the type of input single cells was selected from 
each heatmap in Fig. 1d. The row was organized into a new matrix, 
visually represented as an overall heatmap (Fig. 1e). The high-value 
elements in this matrix are sparse not only in the row but also in the 
column. The sparsity of the column elements ensures that cell-type 
recognition for each type capsule is independently determined by 
one or two different primary capsules. As a typical example, the 
unique high-value element at row 2 and column 1 specifies that the 
first primary capsule completely corresponds to the CD14+ mono-
cyte type capsule, which enables recognition of CD14+ mono-
cytes. The above characteristics indicate that the simple connection 
between primary capsules and type capsules can be decomposed via 
coupling coefficient analysis. The characteristics of coupling coef-
ficients linking primary capsules with type capsules are similar in 
the well trained scCapsNet model using mRBC scRNA-seq data 
(Extended Data Fig. 1d–e). In this way, the primary-type capsule 
architecture and internal parameter analysis in scCapsNet has made 
the black box transparent and interpretable in the decision-making 
process of cell labelling.

Fig. 2 | The identification of the core gene set responsible for recognition of each cell type. a, An internal weight matrix of neural networks connecting 
inputs and each primary capsule in feature extraction module. Each gene can be represented by a real-value low-dimensional column vector of the weight 
matrix. b, The plot depicts the two-dimensional PCA on the weight matrix for the fourth primary capsule. Each dot represents a gene with a rank according 
to the score of principal components. The three lines represent three sliding values, which cut out some genes along the principal component score. A 
group of core genes marked in blue are defined by the dotted line. c, Curves of cell-type recognition accuracies. The ranked genes are defined by a sliding 
cutoff value on the principal component score are excluded from the inputs of the scCapsNet model. The accuracy curve for each cell type is represented 
in a distinct colour. The degrading recognition accuracies corresponding to the three sliding lines in Fig. 2b are marked. The dotted line defines a group of 
core genes responsible for CD8+ T cell identification, where the recognition accuracy degrades to close to 0 for CD8+ T cells but only slightly decreases 
for any other cell type. d, The heatmaps of the revised matrices of average coupling coefficients for the hPBMC dataset with the loss of the group of 
CD8+ T cell core genes in the inputs of the scCapsNet model. The heatmaps represent the revised average coupling coefficient matrix for the single B 
cells, CD14+ monocytes, CD4+ T cells, CD8+ T cells, dendritic cells, FCGR3A+ monocytes, megakaryocytes and NK cells. For each heatmap, the row 
represents type capsules and the column represents primary capsules. e, Revised overall heatmap of the combined matrix of average coupling coefficients. 
The combined matrix contains the effective type capsule row in d where its recognition type matches the type of single cells input.
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Feature extractors in primary capsules determining groups of 
core genes responsible for subcellular-type identification. As 
well as coupling coefficients, the internal weight parameters in the 
networks connecting the inputs with each primary capsule are esti-
mated in the well trained scCapsNet model (Fig. 2a). These parame-
ters form a weight matrix for each primary capsule, which provides a 
low-dimensional column vector representation for each input gene. 
Through PCA on these vectors in the weight matrix, the input genes 

have a rank according to the scores of principal components for 
each primary capsule (Fig. 2b and Extended Data Figs. 2b–9b). For 
example, Fig. 2b shows the plot of two-dimensional PCA on column 
vectors in the weight matrix for the fourth primary capsule. A cutoff 
value of the principal component score corresponds to a group of 
ranked genes. When we exclude this group of genes in the inputs of 
the scCapsNet model, a new set of cell-type recognition accuracies are 
obtained. We slide the cutoff values along the principal component  
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scores in both ascending and descending order. There exists a set 
of cell-type-recognition-accuracy curves, where the recognition 
accuracy of one cell type reduces much more sharply than others 
with the ascending or descending sliding cutoff values. For example, 
the curves in Fig. 2c reflect the degradation of cell-type-recognition 
accuracies with the descending sliding cutoff values along the prin-
cipal component scores in Fig. 2b. The appropriate threshold of the 
principal component score as a dotted line, where the recognition 
accuracy of CD8+ T cells is close to 0 but others slightly decrease, 
corresponds to a group of core genes responsible for CD8+ T cell 
identification (Fig. 2b,c). The exclusion of this group of core genes 
in the inputs specially results in the modification of the param-
eter matrix of average coupling coefficients for the CD8+ T cells  
(Fig. 1c, Fig. 2d). The new high-value elements in this matrix occur 
in the CD4+ T cell type capsule row (Fig. 2d). Average coupling 
coefficients with high values in the CD8+ T cell type capsule row, 
which were previously responsible for recognition of CD8+ T cells, 
become much lower (Fig. 1d, Fig. 2d,e). The above interpretation on 
the modified parameter matrices of average coupling coefficients is 
consistent with the outputs of the scCapsNet model. First, the loss of 
the core genes prevents CD8+ T cells from being correctly identifi-
cation, but rarely affects the recognition of other cell types. Second, 
CD8 T cells are misclassified as CD4+ T cells.

Similarly, the sixth primary capsule defines another group of 
core genes responsible for megakaryocyte identification. The recog-
nition accuracy of megakaryocytes decreases rapidly with the slid-
ing cutoff value on the second principal component of its weight 
matrix (Extended Data Fig. 7). We performed similar procedures 
for the recognition of the remaining subcellular types. In sum, we 
performed PCA analysis on the weight matrices for primary cap-
sules 1, 2, 4, 6, 8, 10, 14 and 16 to obtain groups of core genes, which 

are responsible for the identification of CD14+ monocytes, CD4+ 
T cells, CD8+ T cells, megakaryocytes, dendritic cells, B cells, 
FCGR3A+ monocytes, and NK cells, respectively (Fig. 2, Extended 
Data Figs. 2–8, and Supplementary Table 1). Additional evidence 
using mRBC scRNA-seq data also suggests that feature extractors 
in selected primary capsules in scCapsNet can define groups of 
core genes responsible for mRBC subcellular-type identification 
(Extended Data Fig. 9).

Groups of core genes for different subcellular types being essen-
tial in biological functions. Typical cell markers and some previ-
ously reported cell-type-related genes in hPBMCs are marked with 
coloured stars in the PCA plots on the weight matrices connect-
ing input genes with primary capsules (Fig. 3). The plots show that 
the primary capsules of scCapsNet model correctly extract the well 
known marker genes relevant to different subcellular types, such 
as CD19 and CD79A for B cells, CD14 and S100A9 for CD14+ 
monocytes, CCR10 and ID3 for CD4+ T cells, CD8A and NKG7 for 
CD8+ T cells, FCER1A for dendritic cells, PF4 for megakaryocytes, 
and NKG7 for NK cells27. The cell-type-associated genes, such as 
the differentially up-expressed genes CTSL, EPS8, CKB and C1QA 
in FCGR3A+ monocytes, are also included in the core gene sets 
relevant to distinct subcellular types (Extended Data Fig. 10). We 
further analysed GO enrichment and reactome pathway for the 
groups of subcellular-type core genes defined by our scCapsNet 
model. The results demonstrate that each group of core genes is 
enriched in the special pathways which are closely connected with 
the corresponding cell type (Fig. 3 and Supplementary Table 2). For 
example, the GO terms and pathways that are strongly associated 
with B cell function, such as ‘B cell differentiation’, ‘B cell receptor 
signalling pathway’, ‘Immunoglobulin production’, and ‘Antibody 
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Fig. 3 | The core genes that are essential for the biological functions of different subcellular types. The scatter plots depict the two-dimensional 
PCA on the column vectors of weight matrices that fully connect inputs and primary capsules 10, 1, 2, 4, 8, 14, 6 and 16. They define the groups of core 
genes (in blue dots), contributing to the identification of B cells, CD14+ monocytes, CD4+ T cells, CD8+ T cells, dendritic cells, FCGR3A+ monocytes, 
megakaryocytes and NK cells. Several well studied cell-type markers are represented as coloured stars with the gene name underneath. Some enriched 
GO terms corresponding closely to the group of core genes are listed below each scatter plot.
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maturation relative DNA mismatch repair (MMR)’, are enriched in 
the genes responsible for the identification of B cells35. Similarly, the 
enriched terms of ‘Toll like receptor signaling pathway’, ‘Defense 
response to bacterium’, ‘Detection of lipopolysaccharide (LPS)’, 
and ‘Macrophage activation’ in CD14+ monocyte genes describe 
the traits of CD14+ monocytes. In sum, the groups of core genes 
responsible for the subcellular-type identification in scCapsNet are 
essential for the biological functions of different subcellular types.

The alternative embedding representation of each gene in scCap-
sNet enabling the identification of gene modules. For hPBMC 
scRNA-seq data, the primary capsules 1, 2, 4, 6, 8, 10, 14 and 16 
in scCapsNet effectively extract cell-type features from the input of 
single-cell RNA expression through the weight matrices. The gene 
names are used as indexes to concatenate column vectors of these 
weight matrices. Thus each gene is embedded into an alternative 
vector representation in a low-dimensional space. We performed 
PCA on the embedded vectors for all the genes. The two groups 
of core genes for CD8+ T cells and for CD4+ T cells, as well as 
the core genes for CD14+ monocyte and FCGR3A+ monocytes, 
can be separated along the first principal component (PC1) and the 
second principal component (PC2), respectively (Fig. 4a,b). The 
two groups of core genes for B cells and NK cells are distinguished 
along the fourth principal component (PC4) (Fig. 4c). And the 
two-dimensional PCA visualization between principal component 
5 (PC5) and principal component 6 (PC6) describes the differences 
of core genes between dendritic cells and megakaryocytes (Fig. 4d). 
The separation in dimension-reduction visualization suggests that 
the core genes of each subcellular type determined by the scCapsNet 
model are separable in the embedded vector space. Thus scCap-
sNet provides a meaningful vector representation for each gene for 
which the RNA expression signature and its attributes that enable 
subcellular-type recognition are effectively embedded.

Some gene modules present in the form of tiny compact clusters 
in the two-dimensional T-SNE (t-distributed stochastic neighbour 
embedding) visualization of the embedding representation, where 
the Euclidean distance exhibits the intrinsical similarity between 
the embedded genes (Fig. 4e). The embedding representations of 
genes in scCapsNet enable the recognition of some gene regulatory 
modules in the tiny clusters and the annotation of their connections 
to cellular phenotypes. The four genes KIR2DL3, KIR2DL1, KLRF1 
and GZMB, defined as the NK cell core genes in scCapsNet, reside 
closely in the embedding space and form a gene module (Fig. 4e,f). 
By contrast, they are mostly scattered in a T-SNE visualization of 
gene expression profiles because of their utterly distinct expression 
(Fig. 4g,h). Previous literature suggests that KIR2DL3, KIR2DL1, 
KLRF1 and GZMB represent simultaneous up-regulation, and initi-
ate the activation of cytotoxic T lymphocytes and/or NK cells in the 
blood of stroke patients36. Also, KIR2DL1 and GZMB are regulated 
by the same transcription factor CREB1 as are its target genes and 
interact with the ubiquitin factor Ube4a37,38. The above evidence 
suggests that KIR2DL3, KIR2DL1, KLRF1 and GZMB form a gene 
module in which they are physically interacting and have similar 
biological function. The embedding representations of genes in 
scCapsNet enable the recognition of some gene regulatory modules 
in which genes are closely relevant in function but present distinct 
RNA expression patterns.

Discussion
As a black box classification model, deep learning has been applied 
primarily in biology and medicine. Here we propose scCapsNet, 
an interpretable deep-learning architecture of capsule networks for 
exploratory analysis of scRNA sequencing data. In the model archi-
tecture, the input of the single-cell transcriptome profile has parallel 
connections with the primary capsules, which extract and deliver 
features to the next type capsules for decisions of cell-type labelling. 
Such an architecture provides the key advantage that scCapsNet has 
the ability to make the deep-learning black box transparent through 
the direct interpretation of internal parameters. In this way, scCap-
sNet can extract core genes and informative gene modules that 
describe the gene expression programs of distinct subcellular types.

Feature selections, including three strategies of ‘Filter’, ‘Wrapper’ 
and ‘Embedded’, are effective ways to evaluate how the single cells 
are labelled with different identities. Independent of the training 
process, the ‘Filter’ strategy measures the intrinsic properties of the 
feature subset specific in each subcellular type via univariate statis-
tics. Differential expression analysis, a method of the typical ‘Filter’ 
strategy, extracts the transcriptome features from groups of single 
cells with the same cell type. Compared with differential expres-
sion analysis, we wondered whether the core genes recognized by 
scCapsNet can more accurately describe the gene expression pro-
grams of different subcellular types. We visualized the separated 
subcellular-type clusters via the T-SNE calculation on the hPBMC 
scRNA-seq data with all the genes (Fig. 5a). The T-SNE plot of 
single-cell transcriptome data without the group of B cell genes 
defined by scCapsNet is visualized for comparison (Fig. 5b). The 
separated red B cells move next towards CD4+ T cells, while the 
position and the shape of other cell clusters remain the same (Fig. 
5a,b). Differential expression analysis on the hPBMC scRNA-seq 
data via the popular Seurat package also extracted an equal amount 
of differentially expressed B cell genes12,13. The T-SNE plot with-
out these differentially expressed genes shows that it can no longer 
clearly distinguish among subcellular types because all the single 
cells move close to each other (Fig. 5c). The result indicates that the 
groups of genes defined by scCapsNet are essential for recognition 
of the subcellular-type gene expression program.

During classification, some existing machine learning algorithms 
can extract gene features that explain the reasons for cell-type clas-
sification. The feature selection in the ‘Embedding’ strategy is 
contained in the learning process of classifier algorithms such as 
decision tree or random forest. But this strategy usually optimizes 
in local space. Moreover, one or two features on each branch of clas-
sifier tree determine the classification of several subcellular types. 
So the subset of gene features responsible for recognition of each 
subcellular type is indivisible. The feature extractor module is 
integrated with the classifier in the ‘Wrapper’ strategy. The predic-
tion accuracy of the model is taken as the selection standard of the 
features. Recursive feature elimination is a typical example of this 
strategy for feature selection. However, it is computationally more 
expensive owing to the repeated learning steps and cross-validation 
required. The strategy for recognition of core genes in scCapsNet is 
like a combination of ‘Wrapper’ and ‘Embedding’. Unlike the ran-
dom forest algorithm, feature extractors in primary capsules deter-
mine groups of high-quality core genes for each subcellular type. 
Moreover, the feature extractors in primary capsules effectively 

Fig. 4 | An embedding representation of each gene integrating its RNA expression signature and its cell-type-labelling attribute in scCapsNet.  
a–d, Visualization of PCA on the embedded gene vectors along different principal components. Each dot represents an embedded vector for a gene and 
its cell-type-labelling attribute is marked in colour. e, The two-dimensional T-SNE (t-distributed stochastic neighbour embedding) visualization for the 
embedding representation of all the genes. The four genes KIR2DL3, KIR2DL1, KLRF1 and GZMB, marked with coloured stars, form a tiny compact cluster.  
f, Heatmap of the four embedded vectors of genes KIR2DL3, KIR2DL1, KLRF1, and GZMB. g, The two-dimensional T-SNE visualization for expression profiles 
of all the genes. The genes KIR2DL3 and KIR2DL1 are separable from the genes KLRF1 and GZMB. h, RNA expression heatmap of the genes KIR2DL3, 
KIR2DL1, KLRF1 and GZMB.
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integrate the RNA expression signature and its cell-type-labelling 
attribute into the embedding representation of each gene. The 
embedding representations of genes in scCapsNet enable the  

recognition of some gene regulatory modules in the tiny clusters 
and the annotation of their connection to cellular phenotypes  
(Fig. 4e–h). Instead of recursively selecting one or a few genes that 
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slightly reduce recognition accuracy, the cutoff values sliding in the 
two-dimensional PCA plot in scCapsNet simply select distinct gene 
sets for the feature elimination experiment. A gene set is defined 
as the core genes of a subcellular type if the removal of the gene set 
leads to almost zero recognition accuracy for this subcellular type 
and unchanged accuracy for other types. The scCapsNet model has 
high accuracy and low time complexity on feature selection.

Meanwhile, the feature elimination experiment in scCapsNet 
obtains cell label conversions among different cell types. The 
removal of the core genes for B cells, dendritic cells, NK cells and 
megakaryocytes basically results in subcellular-type misidentifica-
tion from B cells to CD4+ T cells, from dendritic cells to FCGR3A+ 
monocytes, from NK cells to CD8+ T cells, and from megakaryo-
cytes to CD14+ monocytes, respectively. The two monocyte catego-
ries of FCGR3A+ monocytes and CD14+ monocytes, as well as the 
two T cell types CD8+ and CD4+ are converted into each other, with 
loss of their respective core genes. The above cell label conversions 
among different cell types are summarized in Fig. 5d,e in the heat-
map and digraph. Interestingly, the cell-type conversions obtained 
in the feature elimination experiment (Fig. 5e) reflect the relation-
ship of hPBMC lineages to some extent. In the hematopoietic cell 
lineage, all types of blood cells progress from a hematopoietic stem 
cell, which can undergo differentiation into a megakaryocyte eryth-
rocyte progenitor, a myeloid progenitor or a lymphoid progenitor. 

The megakaryocytes differentiate from the megakaryocyte eryth-
rocyte progenitor. The myeloid progenitor gives rise to the myeloid 
lineage of monocytes and dendritic cells. And the lymphoid pro-
genitor gives rise to the lymphoid lineage of leukocytes: the NK cells 
and the T and B lymphocytes. The inter-conversions of cell types 
occur mainly among cells of the same lineage (such as B cells, T cells 
and NK cells belonging to the lymphoid lineage) that originate from 
the same progenitors. Moreover, the cell conversion from NK cells 
to T cells, rather than to B cells, is consistent with the fact that in the 
lymphoid lineage CD25 stage pro-T cells, the common T/NK pre-
cursor cells, display dual T/NK cell development potential39. This 
suggests a potential application scenario for scCapsNet, that is, cell 
lineage construction of single-cell subtypes.

The implementation of capsule networks depends critically upon 
the availability of large, high-quality datasets. The genes expressed 
in thousands of single cells can be screened in one scRNA-seq 
experiment. The data quality is improved with the wide utility of 
the scRNA-seq technologies. So the capsule network model is par-
ticularly suitable for scRNA-seq data analysis. We have designed an 
interpretable architecture of capsule networks for single-cell-type 
labelling and subcellular-type gene expression program identi-
fication. More custom architecture designs of capsule networks 
will extend applications making use of supervised machine learn-
ing. For instance, the connections between inputs of single-cell 
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multi-omic sources (for example, transcriptomics, proteomics and  
metabolomics) and primary capsules would provide the best  
information possible to feature extraction and multi-omic  
integration analysis17.

Methods
The scRNA-seq datasets and data preprocessing. We evaluated the utility of our 
method for single-cell transcriptome analysis using Drop-Seq single-cell data of 
mRBCs, two datasets of 10X Genomics single-cell data of hPBMCs, four pancreas 
datasets (Baron Human by inDrop, about 5,000 cells; Muraro by CEL-Seq2, 
about 1,500 cells; Segerstople by SMART-Seq, about 1,400 cells, and Xin by 
SMARTer, about 1,400 cells) and so on11,30–33.We adopt the same scRNA-seq data 
preprocessing module as in Lopez et al.20. The transcriptome profiles included 
about 20,000 single mRBCs with on average 13,000 genes from 15 subcellular 
groups and about 12,000 and 6,000 single hPBMCs with on average 3,300 genes 
from eight subcellular groups and others (as summarized in Supplementary  
Table 3). All the data were log-transformed before being used. The 
‘computeSumFactors’ method from the R package ‘scran’ was used for data 
normalization40.

The architecture and parameters of the scCapsNet model. In the architecture of 
our scCapsNet model, we choose l parallel fully connected neural networks using a 
ReLU activation function as the feature extractor.

ui ¼ ReLU Wi
px

� �
i 2 1; 2¼ ; l½  ð1Þ

where x represents input vector with length g, g is equal to the number of genes 
and Wi

p

I
 represent weight matrices of neural networks with dimension (n, g), where 

the rows are denoted as primary capsules and column vectors (cvi1
I

, cvi2 ¼ cvig
I

) 
are indexed with genes. The output ui of each fully connected neural network i 
i 2 ½1; 2¼ ; lð Þ
I

 is a vector with length n, viewed as the ‘primary capsule’ in the 
model. The feature extractor module converts the features in RNA expression to 
activities of output (u1, u2…ul).

The features are subsequently delivered through primary capsule to the 
capsule in the final layer by ‘dynamic routing’. Each capsule in the final layer, the 
‘type capsule’, corresponds to each cell type. They are denoted as vectors vj, where 
j 2 1; 2¼ ; k½ 
I

, k is the number of the cell type and m is the length of the vectors. 
The capsule network module is implemented in Keras (https://github.com/bojone/
Capsule).

Before the ‘dynamic routing’ process, the primary capsules are multiplied by 
weight matrices Wij to produce ‘prediction vectors’ ûjji

I
.

ûjji ¼ Wijui ð2Þ

Then the iterative dynamic routing begins. First, the ‘coupling coefficients’ cij 
are calculated by:

cij ¼
exp bij

� 
P

k exp bikð Þ
ð3Þ

where bij is an intermediate parameter with initial value of zero, representing the 
inner product of the prediction vector and type capsule vector.

To compute the bij value for the next-round iteration, the weighted sum sj over 
all k prediction vectors ûjji

I
 is calculated as follows:

sj ¼
X

i
cij ûjji ð4Þ

Second, bij is computed by the dot product of ûjji
I

 and sj as the last step of the 
one-round dynamic routing process:

bij ¼ ûjji:sj ð5Þ

After several rounds of dynamic routing, the type capsule vj is calculated by a 
non-linear ‘squashing’ function:

vj ¼
jjsjjj2

0:5þ jjsjjj2
sj
jjsjjj

ð6Þ

The following pseudocode illustrates the implementation of scCapsNet:
1: For all primary capsule i: ui = ReLU Wi

px
� �

I2: For all primary capsule i and type capsule j: ûjji ¼Wijui
I3: Procedure ROUTING (ûjji; r

I
)

4: For all primary capsule I and type capsule j: bij ←0.
5: For r iterations do
6: For all primary capsule i: ci ← softmax(bi)
7: For all type capsule j: sj  

P
i cij ûjji

I8: For all primary capsule i and type capsule j: bij  ûjji:sj
Ireturn vj← squash(sj)

The implementation of scCapsNet can be found in https://github.com/
wanglf19/scCaps. We used shuffle-split cross-validation, a data resampling 
method, to evaluate the accuracy of scCapsNet’s subcellular type recognition. 
During the process of testing the scCapsNet classifier for recognition of cell-type 
Ci, the samples labelled with cell type Ci were the pre-known positives, and the 
other testing samples were the pre-known negatives. At the jth cross-validation, 
the test set with Nj samples was derived from a shuffle split of the original 
scRNA-seq data. The number of the positive samples correctly classified to be 
cell type Ci was recorded as Nj;Ci

I
. The accuracy was calculated by the equation P

Ci2all the types NjCi=Nj

I
.

Coupling coefficients contributing to type recognition. In the scCapsNet model, 
the type capsule vj derives from a weighted sum of prediction vectors ûjji

I
. The 

weights are the coupling coefficients cij and the magnitude of those coefficients 
can roughly be regarded as the contribution of the primary capsules ui to the type 
capsules vj. Each single cell generates its own coupling coefficients. The average 
coupling coefficients for the single cells with same cell type are calculated by the 
formula

ctype averageij ¼
P

type c
type
ijP

type 1
ð7Þ

Function analysis on the core gene sets. A literature search annotated 
several cell-type-associated genes in the core gene sets related to distinct 
subcellular types2,41–70. Gene Ontology (GO) enrichment analysis and reactome 
pathway analysis were utilized for function annotations on the gene set. The 
‘GOenrichment’ function from R package ‘GOSim’ was used for GO enrichment 
analysis71, which uses the method from R package ‘topGO’72. The reactome web 
server was used for pathway analysis73,74.

An embedding representation of a gene. The primary capsules 1, 2, 4, 6, 8, 10, 14 
and 16 contribute to the recognition of CD14+ monocytes, CD4+ T cells, CD8+ 
T cells, megakaryocytes, dendritic cells, B cells, FCGR3A+ monocytes and NK 
cells. Column vectors represent the embedding of the same gene from a different 
weight matrix are concatenated together to form a long vector, for example 
[cv11 ; cv21; cv41 ; cv61; cv81 ; cv101 ; cv141 ; cv161
I

], as a unique embedding representation  
of a gene.

Algorithm implementation for comparisons on cell-type-recognition accuracy. 
A neural network with sigmoid activation function was implemented in Keras. 
The algorithms SVM, random forest, LDA, nearest-neighbour, SVMrejection and 
LDArejection were implemented with the Python package “scikit-learn”  
(https://github.com/tabdelaal/scRNAseq_Benchmark/).

Data availability
The pre-processed single-cell transcriptome data of mRBCs28 and hPBMCs27 
can be downloaded and extracted from Github (RetinaDataset and 
PurifiedPBMCDataset, https://github.com/YosefLab/scVI)20. Other pre-processed 
single-cell transcriptome data for the cross-dataset experiment, unseen population 
experiment and negative control experiment can be downloaded from https://
zenodo.org/record/3357167#.X0kHlPZuJZU11. All the data used in this Article are 
summarized in Supplementary Table 3.

Code availability
The implementation of scCapsNet can be found in https://github.com/wanglf19/
scCaps or https://zenodo.org/record/4007185#.X0oHPPZuJZU.
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Extended Data Fig. 1 | The performance and its internal parameters of scCapsNet relative with cell type recognition. a, The classification performance 
across two hPBMC datasets from the 10x Genomics platform. We trained scCapsNet and other machine learning methods using one dataset and then 
evaluated their performances on another dataset. The heatmap shows the prediction accuracy for each classifier. b, The classification performance 
across four human pancreatic datasets from different single-cell RNA-seq protocols. The four datasets are quoted from Abdelaal’s paper. Each column 
corresponds to one sub-task in which one of the four datasets was used as a test set and the rest three datasets were used as training. The heatmap shows 
the prediction accuracy for each classifier. c, The rejection option evaluation in the negative control experiment on scCapsNet, SVMrejection and LDArejection 
models. There are two groups of datasets, the group of human dataset from PBMC and pancreas tissues, and the group of mouse dataset from visual 
cortex and pancreas tissues. In each column, the classifiers are used to predict single cell identity of one dataset after training on the paired dataset from 
another different tissue. The recognition rates of unlabeled single cells as the negative control are shown in the heatmap. The LDArejection reported error in 
AMB16-Baron Mouse experiment, so we set the percentage of unlabeled cells to 0. d, The heatmaps of the matrices of averaged coupling coefficients for 
mRBC dataset with cell type listed above. For each heatmap, the row represents type capsules and the column represents primary capsules. e, The overall 
heatmap of the combining matrix of average coupling coefficient. The combining matrix contains the effective type capsule row in Extended Data Fig. 1b 
where its recognition type is in accordance with the type of input single cells.
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Extended Data Fig. 2 | The identification of the core gene set responsible for recognition of B cells in hPBMC. a, The coloured changing curves of 
cell-type recognition accuracies while the ranking genes defined by a sliding cutoff value on the principal component score were excluded in the inputs of 
the scCapsNet model. The accuracy curve for each cell type is represented in a distinct colour. The dotted line defines a group of core genes responsible 
for B-cell identification, where the recognition accuracy of B cells degrades close to 0 but slightly decreases for any other cell type. b, The plot depicts 
the two-dimensional PCA on the weight matrix for the primary capsule. Each dot represents a gene with a rank according to the score of principal 
components. A group of core genes marked as blue colour are defined. c, The comparison of prediction accuracy of each cell type before and after the 
masking of the B-cell core genes. d, The heatmaps of the revised matrices of averaged coupling coefficients for hPBMC dataset with the loss of the group 
of B-cell core genes in the inputs of the scCapsNet model. The heatmaps in order represent the revised averaged coupling coefficient matrix for the single 
B cells, CD14+ monocytes, CD4+ T cells, CD8+ T cells, dendritic cells, FCGR3A+ monocytes, megakaryocytes and NK cells. For each heatmap, the row 
represents type capsules and the column represents primary capsules. e, The revision of the overall heatmap of the combining matrix of average coupling 
coefficient. The combining matrix contains the effective type capsule row in Extended Data Fig. 2d where its recognition type is in accordance with the 
type of input single cells.
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Extended Data Fig. 3 | The identification of the core gene set responsible for recognition of CD14+ monocytes in hPBMC. a, The coloured changing 
curves of cell-type recognition accuracies while the ranking genes defined by a sliding cutoff value on the principal component score were excluded in 
the inputs of the scCapsNet model. The accuracy curve for each cell type is represented in a distinct colour. The dotted line defines a group of core genes 
responsible for CD14+ monocyte identification, where the recognition accuracy of CD14+ monocytes degrades close to 0 but slightly decreases for 
any other cell type. b, The plot depicts the two-dimensional PCA on the weight matrix for the primary capsule. Each dot represents a gene with a rank 
according to the score of principal components. A group of core genes marked as blue colour are defined. c, The comparison of prediction accuracy of each 
cell type before and after the masking of the CD14+ monocyte core genes. d, The heatmaps of the revised matrices of averaged coupling coefficients for 
hPBMC dataset with the loss of the group of CD14+ monocytes core genes in the inputs of the scCapsNet model. The heatmaps in order represent the 
revised averaged coupling coefficient matrix for the single B cells, CD14+ monocytes, CD4+ T cells, CD8+ T cells, dendritic cells, FCGR3A+ monocytes, 
megakaryocytes and NK cells. For each heatmap, the row represents type capsules and the column represents primary capsules. e, The revision of the 
overall heatmap of the combining matrix of average coupling coefficient. The combining matrix contains the effective type capsule row in Extended Data 
Fig. 3d where its recognition type is in accordance with the type of input single cells.
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Extended Data Fig. 4 | The identification of the core gene set responsible for recognition of CD4+ T cells in hPBMC. a, The coloured changing curves of 
cell-type recognition accuracies while the ranking genes defined by a sliding cutoff value on the principal component score were excluded in the inputs of 
the scCapsNet model. The accuracy curve for each cell type is represented in a distinct colour. The dotted line defines a group of core genes responsible 
for CD4+ T cell identification, where the recognition accuracy of CD4+ T cells degrades close to 0 but slightly decreases for any other cell type. b, The 
plot depicts the two-dimensional PCA on the weight matrix for the primary capsule. Each dot represents a gene with a rank according to the score of 
principal components. A group of core genes marked as blue colour are defined. c, The comparison of prediction accuracy of each cell type before and after 
the masking of the CD4+ T cell core genes. d, The heatmaps of the revised matrices of averaged coupling coefficients for hPBMC dataset with the loss 
of the group of CD4+ T cell core genes in the inputs of the scCapsNet model. The heatmaps in order represent the revised averaged coupling coefficient 
matrix for the single B cells, CD14+ monocytes, CD4+ T cells, CD8+ T cells, dendritic cells, FCGR3A+ monocytes, megakaryocytes and NK cells. For each 
heatmap, the row represents type capsules and the column represents primary capsules. e, The revision of the overall heatmap of the combining matrix 
of average coupling coefficient. The combining matrix contains the effective type capsule row in Extended Data Fig. 4d where its recognition type is in 
accordance with the type of input single cells.
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Extended Data Fig. 5 | The identification of the core gene set responsible for recognition of dendritic cells in hPBMC. a, The coloured changing curves of 
cell-type recognition accuracies while the ranking genes defined by a sliding cutoff value on the principal component score were excluded in the inputs of 
the scCapsNet model. The accuracy curve for each cell type is represented in a distinct colour. The dotted line defines a group of core genes responsible 
for dendritic-cell identification, where the recognition accuracy of dendritic cells degrades close to 0 but slightly decreases for any other cell type. b, The 
plot depicts the two-dimensional PCA on the weight matrix for the primary capsule. Each dot represents a gene with a rank according to the score of 
principal components. A group of core genes marked as blue colour are defined. c, The comparison of prediction accuracy of each cell type before and after 
the masking of the dendritic-cell core genes. d, The heatmaps of the revised matrices of averaged coupling coefficients for hPBMC dataset with the loss 
of the group of dendritic-cell core genes in the inputs of the scCapsNet model. The heatmaps in order represent the revised averaged coupling coefficient 
matrix for the single B cells, CD14+ monocytes, CD4+ T cells, CD8+ T cells, dendritic cells, FCGR3A+ monocytes, megakaryocytes and NK cells. For each 
heatmap, the row represents type capsules and the column represents primary capsules. e, The revision of the overall heatmap of the combining matrix 
of average coupling coefficient. The combining matrix contains the effective type capsule row in Extended Data Fig. 5d where its recognition type is in 
accordance with the type of input single cells.
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Extended Data Fig. 6 | The identification of the core gene set responsible for recognition of FCGR3A+ monocytes in hPBMC. a, The coloured changing 
curves of cell-type recognition accuracies while the ranking genes defined by a sliding cutoff value on the principal component score were excluded in 
the inputs of the scCapsNet model. The accuracy curve for each cell type is represented in a distinct colour. The dotted line defines a group of core genes 
responsible for FCGR3A+ monocyte identification, where the recognition accuracy of FCGR3A+ monocytes degrades close to 0 but slightly decreases 
for any other cell type. b, The plot depicts the two-dimensional PCA on the weight matrix for the primary capsule. Each dot represents a gene with a rank 
according to the score of principal components. A group of core genes marked as blue colour are defined. c, The comparison of prediction accuracy of each 
cell type before and after the masking of the FCGR3A+ monocyte core genes. d, The heatmaps of the revised matrices of averaged coupling coefficients 
for the hPBMC dataset with the loss of the group of FCGR3A+ monocyte core genes in the inputs of the scCapsNet model. The heatmaps in order 
represent the revised averaged coupling coefficient matrix for the single B cells, CD14+ monocytes, CD4+ T cells, CD8+ T cells, dendritic cells, FCGR3A+ 
monocytes, megakaryocytes and NK cells. For each heatmap, the row represents type capsules and the column represents primary capsules.  
e, The revision of the overall heatmap of the combining matrix of average coupling coefficient. The combining matrix contains the effective type capsule 
row in Extended Data Fig. 6d where its recognition type is in accordance with the type of input single cells.
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Extended Data Fig. 7 | The identification of the core gene set responsible for recognition of megakaryocytes in hPBMC. a, The coloured changing curves 
of cell-type recognition accuracies while the ranking genes defined by a sliding cutoff value on the principal component score were excluded in the inputs 
of the scCapsNet model. The accuracy curve for each cell type is represented in a distinct colour. The dotted line defines a group of core genes responsible 
for megakaryocyte identification, where the recognition accuracy of megakaryocytes degrades close to 0 but slightly decreases for any other cell type.  
b, The plot depicts the two-dimensional PCA on the weight matrix for the primary capsule. Each dot represents a gene with a rank according to the score 
of principal components. A group of core genes marked as blue colour are defined. c, The comparison of prediction accuracy of each cell type before 
and after the masking of the megakaryocyte core genes. d, The heatmaps of the revised matrices of averaged coupling coefficients for hPBMC dataset 
with the loss of the group of megakaryocyte core genes in the inputs of the scCapsNet model. The heatmaps in order represent the revised averaged 
coupling coefficient matrix for the single B cells, CD14+ monocytes, CD4+ T cells, CD8+ T cells, dendritic cells, FCGR3A+ monocytes, megakaryocytes 
and NK cells. For each heatmap, the row represents type capsules and the column represents primary capsules. e, The revision of the overall heatmap of 
the combining matrix of average coupling coefficient. The combining matrix contains the effective type capsule row in Extended Data Fig. 7d where its 
recognition type is in accordance with the type of input single cells.
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Extended Data Fig. 8 | The identification of the core gene set responsible for recognition of NK cells in hPBMC. a, The coloured changing curves of 
cell-type recognition accuracies while the ranking genes defined by a sliding cutoff value on the principal component score were excluded in the inputs of 
the scCapsNet model. The accuracy curve for each cell type is represented in a distinct colour. The dotted line defines a group of core genes responsible 
for NK cell identification, where the recognition accuracy of NK cells degrades close to 0 but slightly decreases for any other cell type. b, The plot depicts 
the two-dimensional PCA on the weight matrix for the primary capsule. Each dot represents a gene with a rank according to the score of principal 
components. A group of core genes marked as blue colour are defined. c, The comparison of prediction accuracy of each cell type before and after the 
masking of the NK cell core genes. d, The heatmaps of the revised matrices of averaged coupling coefficients for hPBMC dataset with the loss of the group 
of NK cell core genes in the inputs of the scCapsNet model. The heatmaps in order represent the revised averaged coupling coefficient matrix for the single 
B cells, CD14+ monocytes, CD4+ T cells, CD8+ T cells, dendritic cells, FCGR3A+ monocytes, megakaryocytes and NK cells. For each heatmap, the row 
represents type capsules and the column represents primary capsules. e, The revision of the overall heatmap of the combining matrix of average coupling 
coefficient. The combining matrix contains the effective type capsule row in Extended Data Fig. 8d where its recognition type is in accordance with the 
type of input single cells.
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Extended Data Fig. 9 | Identification of the core gene set responsible for recognition of one cell type in hRBC. a, The plot depicts the two-dimensional 
PCA on the weight matrix for the primary capsule five in model trained on mRBC dataset. Each dot represents a gene with a rank according to the score of 
principal components. A group of core genes marked as blue colour are defined. b, The comparison of prediction accuracy of this cell type before and after 
the masking of the core genes. c, The heatmaps of the revised matrices of averaged coupling coefficients for hRBC dataset with the loss of the group of 
core genes in the inputs of the scCapsNet model. For each heatmap, the row represents type capsules and the column represents primary capsules. d, The 
revision of the overall heatmap of the combining matrix of average coupling coefficient. The combining matrix contains the effective type capsule row in 
Extended Data Fig. 9c where its recognition type is in accordance with the type of input single cells.
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Extended Data Fig. 10 | The well studied cell-type associated genes in the core gene sets relevant to distinct subcellular types. The scatter plots in 
order depict the two-dimensional PCA on column vectors of weight matrices fully connecting inputs and primary capsules 10, 1, 2, 4, 8, 14, 6, and 16. They 
defined the groups of core genes (in blue dots), contributing to the identification of B cells, CD14 + monocytes, CD4 + T cells, CD8 + T cells, dendritic cells, 
FCGR3A + monocytes, megakaryocytes, and NK cells respectively. Several well-studied cell type associated genes are represented as coloured stars with 
gene name underneath. The colours of the stars represent the cell type of the corresponding gene associated.
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