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Abstract

Based on brief review of approaches for community identification and measurement
for sensitivity characterization, the accuracy and precision of several approaches for
detecting communities in weighted networks are investigated. In weighted networks,
the community structure should take both links and link weights into account and the
partition of networks should be evaluated by weighted modularity Qw. The results
reveal that link weight has important effects on communities especially in dense net-
works. Potts model and Weighted Extremal Optimization (WEO) algorithm work well
on weighted networks. Then Potts model and WEO algorithms are used to detect
communities in Rhesus monkey network. The results gives nice understanding for real
community structure.
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1 Introduction

In recent years, more and more systems in many different fields are depicted as complex
networks, and recent empirical studies on networks display that there are communities in
social networks, metabolic networks, economic networks [1, 2, 3, 4, 5] and so on. As one of
the important properties of networks, community structure attracts us much attention.
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In binary networks, community structure is defined as groups of network vertices, within
groups there are dense internal links among nodes, but between groups nodes loosely con-
nected to the rest of the network[10]. Community structure is one of the most impor-
tant characters to understand the functional properties of complex networks. For instance,
in food web, communities reveal the subsystem of ecosystem[7]. In the world wide web,
the community analysis has found thematic groups[34, 35]. Email network can be divided
into departmental groups whose work is distinct and the communities reveal organization
structure[8, 9]. In biochemical or neural networks, communities may correspond to func-
tional groups[11]. The deep understanding on community structure will make us comprehend
and analyze the characteristics of systems better.

In order to partition communities of networks, many approaches have been proposed
recently [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26]. Most of these methods detect
communities according to topological structure or dynamical behaviors of networks. Their
sensitivity and computational cost have been investigated by Danon et al recently[27]. In
practical situation, the number of communities are not known ahead of time. So to evaluate
the partition of networks quantitatively is an important issue in community identification.
Newman and Girvan proposed a measurement for the partition of a network based on topo-
logical structure, which is called modularity Q[23]. The value of modularity is lager, the
partition is better.

Most of above methods are developed for binary networks. In binary networks, the close-
ness of relationships (link weight) among the nodes are neglected. But in many real networks,
link weight plays an important rule in the structure and function of complex networks. The
community identification in weighted networks could give us better understanding for the
real functional groups.

For detecting community structure in weighted networks, the first problem is how to
define the community structure in weighted networks. It is related with the evaluation of
partitions of weighted network. In binary networks, it is enough to consider link density
among nodes. But in weighted networks, the closeness of relations also affect community
structure. So the definition of the community must integrate link with link weight. Newman
has generalized the modularity Q to weighted modularity Qw[30]. It suggests that we can
depict the community as follows: community structure is the groups of network vertices.
The fraction of internal link weight among nodes within groups is much greater than that
of link weight between groups. In other words, the relations among nodes within groups are
much closer than relations between groups.

The second problem is that which method is more appropriate for detecting community
in weighted networks. Most approaches develope for binary networks can be generalized
to weighted networks. For example, in presented algorithms, GN algorithm is based on
the link betweenees. When we take link weight into account, the link betweenness can be
gotten from weighted shortest path[23]. Potts model algorithm is based on Potts spin glass
Hamiltonian, and link weight could represent coupling strength between spins[24]. Extremal
Optimization(EO) method considers the contribution of links to modularity[25]. We could
generalize it to Weighted Extremal Optimization(WEO) algorithm, which will consider the
contribution of link weight to weighted modularity. Usually, groups separated with the link
weight should be different from the result based only on topological structure. The above
three methods give us the important examples of approaches for community identification
based on topological structure, dynamics, and modularity respectively. In this paper, we
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mainly focus on GN algorithm, Potts model and WEO method in weighted networks.

In order to find an appropriate approach on weighted networks, it is necessary to evaluate
accuracy and precision of each method. We can apply each method to ad hoc networks
with a well known, fixed community structure. Then accuracy can be got by comparing
the presumed communities and the communities found by the algorithm. While precision
can be calculated by comparing any pair of communities found by the algorithm under
same conditions. Obviously, measuring the difference of different community structures
quantitatively is needed to evaluate accuracy and precision. Newman described a method
to calculate the sensitivity of algorithms[23]. Leon Danon et al proposed a measurement
I(A,B) based on information theory[27]. These two measurements mainly focus on the
proportion of nodes which are correctly grouped. In our previous work, we proposed a
similarity function S to measure the difference between partitions[28]. It is based on the
similarity and dissimilarity of two sets and addresses the difference of number of groups in
different partitions. We will discuss these measurements briefly and adopt similarity function
S to quantify the difference of different partitions.

In this paper, we investigate the performance of several generalized approaches for detect-
ing community structures in weighted networks. Both accuracy and precision are evaluated.
The presentation is organized as follows. In Section 2, we introduce the weighted modularity
and some approaches for community identification briefly. Then we review some methods
to measure the difference of different communities and introduce similarity function S to
quantitatively describe the consistency between different partitions. Section 3 gives results
of the accuracy and precision of several approaches based on idealized binary and weighted
networks. The results reveal that weighted modularity Qw gives a nice description for the
community structure of weighted networks. Potts model based approach and WEO ap-
proach work well in detecting community in weighted networks. Then WEO approach is
applied to Rhesus monkey network. The result is consistent well with the real societies.
Some concluding remarks are given in Section 4 .

2 Weighted Modularity, Approaches andMeasurements

1. Weighted Modularity. Link weight, as a strength of interaction, is believed to be
an important variable in networks. It gives more information about the network besides
its topology dominated by links. Weighted networks can depict the real system better
and the community structure should take link weights into account. So the definition of
community[10] in weighted networks need be modified.

Newman and Girvan have defined a modularity Q to evaluate community identification
in binary networks[23]. Newman have indicated that modularity Q can be generalized to
weighted networks[30]:

Qw =
1

2w

∑

ij

[wij −
wiwj

2w
]δ(ci, cj), (1)

where wij is the link weight (similarity weight) between node i and j, wi =
∑

j wij (vertex

weight) is the summation of link weight attaching to node i, w = 1
2

∑
ij wij is the summation

of link weight in the network, and ci shows that vertex i belongs to community ci. Hence
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Eq. (1) can be write as

Qw =
∑

r

(ewrr − (awr )
2) (2)

where ewrr = 1
2w

∑
ij wijδ(ci, r)δ(cj , r) is the fraction of summation of link weight that con-

nect two nodes inside the community r, awr = 1
2w

∑
iwiδ(ci, r) is the fraction of summation

of vertex weight of community r. Obviously, Qw takes both link and link weight into account.
It suggests a description for community in weighted networks. We think that weighted com-
munity structure is the groups of network vertices. The summation of internal link weight
among nodes within groups are larger than that of link weight between groups. In other
words, the relations of nodes within group are close, but the relations of nodes between
groups are distant. In the following discussion, we evaluate a partition of weighted networks
by the weighted modularity Qw given by Eq. (2) and Qw is considered as the global variable
to optimize in extremal optimization algorithm.

2. Methods for Detecting Community. In this paper, we mainly discuss the the
performance of GN algorithm, Potts model algorithm, and Extremal Optimization algorithm
in weighted networks.

The GN algorithm is based on the concept of edge betweenness. The betweenness of an
edge in network is defined to be the number of the shortest paths passing through it. It is
very clearly that edges which connect communities, as all shortest paths that connect nodes
in different communities have to run along it, have a larger betweenness value. By removing
the edge with the largest betweenness at each step, the whole network can be gradually split
into isolated components or communities[10]. Based on weighted shortest path, the above
ideas can be easily generalized to weighted networks[30].

For Potts model algorithm, community coincides with the domain of equal spin value in
the minima of modified Potts spin glass Hamiltonian. The node in networks just be looked
as the electron with spin elected from q spin states. The link correspond to the reciprocity
between electrons. This will allow us to partition the communities of a network onto the
magnetic domains in the ground state or in local minima of a suitable Hamiltonian. For
this purpose authors[24] append a global constraint to the q-state Potts Hamiltonian that
forces the spins into communities according to

H =
∑

(i,j)∈E

Jijδσiσj
+ γ

q∑

s=1

ns(ns − 1)

2
(3)

where, σi denotes the individual spins which are allowed to take q values 1...q, ns denotes the
number of spins that have spin s such that

∑q

s=1 ns = N , Jij is the ferromagnetic interaction

strength, γ =
2<Jij>M

N(N−1) is a positive parameter. To practically find or approximate the

ground state of system, a simple Metropolis algorithm could be employed. For weighted
networks, Jij can be taken as similarity link weight. Then Potts model algorithm can be
easily applied to weighted networks.

The Extremal Optimization algorithm uses a heuristic search to optimize the modular-
ity Q by dividing network into groups[25]. When this method is generalized to weighted
networks, Q is replaced by Qw as the global variable to optimize. While the value of each
node contributing to weighted modularity Qw can be defined as

qwi = wr(i) − wia
w
r(i), (4)
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where wr(i) is the summation of link weight that a node i belonging to a community r has
with nodes in the same community, and wi is the vertex weight of node i. So the modularity
Qw is Qw = 1

2w

∑
i q

w
i . Rescaling the local variable qwi by the vertex weight of node i, the

contribution of node i to the weighted modularity is defined as

λw
i =

qwi
wi

=
wr(i)

wi

− awr(i), (5)

λw
i is normalized in the interval [−1, 1]. It gives the relative contributions of individual nodes

to the community structure. So it could be considered as the fitness of a node involved in
the weighted extremal optimization process. The process of detecting community structure
by weighted extremal optimization (WEO) is as follows:

1. Initially, split randomly the whole network into two groups with similar number of
nodes.

2. At each time step, move the node with the lower fitness from one group to the other.
After each movement, recalculate the fitness of every node based on Eq. (5).

3. Repeat process 2 until a maximum value of Qw is reached. After that, proceed recur-
sively with every group. When the modularity Qw cannot be improved, the process
will finish.

In order to escape from local maxima, WEO algorithm adopts τ -EO method[36]. The node
is selected according to the following probability:

P (q) ∝ q−τ , (6)

where q is the rank number of node according to their fitness values, and τ ∼ 1 + 1/ln(N).

3. Comparing Two Community Structures. In order to find appropriate method
to solve a certain problem, we should know the performance of each method, including their
speed and sensitivity. Usually the sensitivity of a algorithm is tested by its performance
when it is applied to ad hoc networks with a well known, fixed structure. The previous
researches focus only on the accuracy of a method. Here we address that both accuracy and
precision of a algorithm should be examined. When we proceed the methods several times
under the same condition, they may give different community structures due to the random
factors in the algorithm. Instead of comparing with the presumed communities to get the
accuracy, the precision should be got by comparing the results from different runs under the
same conditions. Obviously, in order to get accuracy or precision of a method, we need to
quantify the differences between different community structures. In other words, we need a
measurement to evaluate the similarity between communities.

There are already several methods to quantify the difference of different partitions. New-
man described a evaluating method in [23]. The largest set of vertices grouped together in
each of the four known communities is considered correctly classified. If two or more of
known sets are put into the same group, then all vertices in those sets are considered incor-
rectly classified. All other vertices not in the largest sets are considered incorrectly classified.
Leon Danon et al proposed the use of the normalized mutual information measure[27]. It is
based on the confusion matrix N , where the rows denote the presumed communities before
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divided, and the columns correspond to the communities found by some algorithm. The
matrix element(Nij) of N is the number of nodes in the presumed community i that ap-
pear in the found community j. A measure of similarity between the partitions, based on
information theory, is then:

I(A,B) =
−2

∑cA
i=1

∑cB
j=1 Nij log(

NijN

Ni.N.j
)

∑cA
i=1 Ni. log(

Ni.

N
) +

∑cB
j=1 N.j log(

N.j

N
)

(7)

where cA is the number of presumed communities and cB is the number of found communi-
ties, Ni. is the sum over row i of matrix Nij and N.j is the sum over column j.

The above two measurements mainly focus on the proportion of nodes which have been
grouped correctly. We have also suggested a method to characterize the difference of com-
munity structures quantitatively[28]. It is based on the similarity and dissimilarity of two
sets A and B defined as the subset of Ω = A

⋃
B. The normalized similarity are defined as

s =
|A ∩B|

|A ∪B|
(8)

Given any two partitions, we should first construct correspondence between two subsets of
two partitions. Then we can get similarity function S by integrating the results of every
single pair[28].

The former two methods evaluate the sensitivity of algorithm by measuring the percent-
age of nodes divided correctly, while the similarity function S we proposed emphasize the
difference of communities. In our method, all clusters have equal status regardless of its
size. For a network with 128 nodes and 4 presumed groups with 32 nodes each, if there are
three communities divided by a method, two of which correspond exactly to two original
communities, and a third, which corresponds to the other two clustered together, the sim-
ilarity is S = 0.625, Newman’s measurement gives 0.5, and I(A,B) = 0.858. Considering
another example, a network consists of n = 20 vertices and is divided into two presumed
groups of 10 nodes each. It is provided by a method that there are three communities in
the result. The two largest groups are divided correctly except one node which forms the
third group. In this case, the accuracy given by each measurements are 0.95(Newman), 0.9
(I(A,B)), and the similarity function is 0.63. So our method for quantifying the difference
of partitions emphasizes the number of communities. It is a reasonable evaluating index to
quantify the difference of community structures. In the following discussion, we use S to
describe the accuracy and precision of the approaches.

3 Results Based on Idealized Networks and Empirical

Studies

The above methods will be applied to ad hoc networks firstly introduced by Newman and
used by many other authors[23, 27]. Each network consists of n = 128 vertices, which
divided into four groups of 32 nodes. Vertices are assigned to groups and are randomly
connected to vertices of the same group by an average of 〈kin〉 links and to vertices of
different groups by an average of 〈kout〉 links. The average degree of all vertices are fixed,
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Figure 1: Algorithm performance as applied to ad hoc networks with n = 128 and four
communities of 32 nodes each. Total average degree is fixed to 16. (a)Comparing precision
of the algorithm by several results on same ad hoc networks. (b)Comparing accuracy using ad
hoc networks with presumed community structure. The x -axis is the average of connections
to outside communities 〈kout〉. Each point is an average over 20 networks and 10 runs each.

namely 〈kin〉 + 〈kout〉 = 16. With 〈kout〉 increasing from small, the communities become
more and more diffuse, and it becomes more and more difficult to detect the communities.
Since the community structure is well known in this case, it is possible to measure accuracy
and precision of each method by quantifying the difference of partitions.

For each approach of community identification, accuracy could be gotten by the com-
parison between the divided communities with the presumed one and precision should be
gotten by the comparison between any pair of results, which are found by same algorithm
performing several times on the same network. In the following numerical investigations, we
first get 20 realizations of idealized ad hoc networks under the same conditions. Then we run
each algorithm to find communities in each network 10 times. Based on these results, using
the similarity function S, comparing each pair of these 10 community structures and average
over the 20 networks (average of 900 results) could give us the precision of the algorithm.
Comparing each divided groups with the presumed structure, we can get the accuracy of
the algorithm by averaging these 200 results.

3.1 Results for binary networks

We apply GN, Potts model, and WEO algorithm on binary ad hoc network first and focus
on both accuracy and precision of the methods measured by similarity function S. From
the results shown in Fig.1, when 〈kout〉 is small, they could find communities well and truly.
The communities become more diffuse with 〈kout〉 increasing. Once 〈kout〉 is lager than a
certain value, it is difficult to find presumed communities exactly. For small 〈kout〉, there are
no discrimination between results of any algorithms. But for large 〈kout〉, the precision of
different algorithms is various (Fig.1(a)) and accuracy falls across the different algorithms.
For example, GN algorithm is stable for any 〈kout〉, though its accuracy is worse when 〈kout〉
is large. However, Potts model and EO algorithm are fluctuant, though their accuracy are
better.
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Figure 2: Networks with 〈kout〉 equaling to 4. The link weights among the nodes in groups
are fixed to 1. The influence of link weight on the out edge on precision(a) and accuracy(b)
when out link weight changes from 0.2 to 3. Each point is an average over 20 networks and
10 runs each.

As shown in Fig.1(b), with 〈kout〉 increasing, accuracy of GN algorithm described by
similarity function S decline more quickly than the other measurements. It is because there
are many small clusters in found communities by GN algorithm and similarity function S
addresses the number of communities crucially.

3.2 Results based on weighted ad hoc networks

In this section, ad hoc networks is added similarity link weight to describe the closeness of
relations. Similarity weight is proportional to the closeness of relationships. The larger the
link weight is, the closer the relation is. Under the basic construction of ad hoc network
described above, the weight of link connected to vertices of the same group is assigned as
1, while the weight of link connected to vertices of different groups is assigned as wout.
In practise, the relationship among the nodes in groups is usually more closer than the
relationship between groups. So wout is normally less than 1. When wout is equal to 1,
weighted ad hoc network could be seen as a binary one.

We consider weighted modularity Qw as the criteria to evaluating partition of commu-
nities. Though there are only two kinds of link weight value in weighted ad hoc networks,
the role of weight on community structure can be investigated qualitatively. When 〈kout〉 is
fixed, with wout increasing from small, it affects community structure obviously.

When 〈kout〉 is equal to 4, any methods can easily partition communities for binary
networks. When wout is small or even equals 1, all algorithms works well to get the correct
communities (as shown in Fig.2). When 〈kout〉 is small, we know that the community
structure is dominated by links. So we can find the presumed groups even when wout is
larger than 1.

In other hand, when 〈kout〉 is large, the communities is very diffuse in binary networks
and it is impossible to find communities correctly by any algorithms. But now the link
weight plays a crucial role in the partition of communities. When wout is small, the network
can also be partitioned accurately into presumed communities (shown as Fig.3). In this case,
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Figure 3: The influence of weight on community structure when 〈kout〉 is equal to 8. A series
of networks possess identical topological structure, and out link weight changes from 0.05
to 1. Each point is an average over 20 networks and 10 runs each.
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Figure 4: The influence of topology on community structure when wout is fixed as 0.2. Each
point is an average over 20 networks and 10 runs each.

Potts model and WEO algorithm work better than GN algorithm. Although GN algorithm
has nice precision, it gives results in low accuracy.

From the above results, we can see that topology and link weight are two factors that
affect community structure. When we set wout equal 0.2, Fig.6 shows the precision and
accuracy of Potts model and WEO algorithm as the function of 〈kout〉. The spectrum of
〈kout〉 is lager than that of binary networks. The results show the link weight really plays an
important rule in community structure and the Potts model and WEO methods are effective
in detecting communities in weighted networks. Even in complete networks, when we set the
link weight be 1 among the same presumed group, while the link weight is wout(wout < 1)
between groups, these two algorithms can divided the network into communities correctly
(as shown in Fig.5). In dense networks, link weight is more important than in sparse
networks. So weighted modularity Qw and corresponding algorithms are helpful to detecting
community structure in dense weighted networks.

In real weighted networks, link weights are usually randomly distributed. We have also
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Figure 5: Accuracy of Potts and WEO algorithms in complete networks with presumed
communities. When wout is less than 1, the algorithms can find the groups correctly. Each
point is an average over 10 runs.
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Figure 6: The performance of Potts model and WEO algorithms in networks with randomly
distributed link weights. (a) and (b) are the precision and accuracy of the algorithms when
〈kout〉 is equal to 4. (c) and (d) are the results when 〈kout〉 is equal to 8. Each point is an
average over 20 networks and 10 runs each.
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tested Potts model and WEO algorithm in the idealized ad hoc networks with random
link weight distribution. For a given network topology with certain 〈kout〉, weights in links
among groups are taken randomly from [0.5,1]. The average link weight in groups is 0.75.
While weights in links between groups (wout) are also taken randomly from a interval with
the same length. With the changing of its average value, we can also get the performance
of algorithms under different conditions. The results are summarized in Fig.6. They are
qualitatively similar with the above results.

3.3 Community structure in Rhesus monkey network

The above investigations are based on idealized networks. Now we move to some real
weighted networks. One example is Rhesus monkey network which is studied by Sade[29] in
1972. This network is based on observations of group F Cayo Santiago, in which 38 monkeys
comprise 6 genealogies and 2 non-natal males (066 and R006). The grooming episodes of
monkeys were registered between 14th June and 31st July 1963, just prior to the mating
season on Cayo Santiago. The network showed the information of members, who were 4
years old or older in 1963. Links denote grooming behavior between the monkeys and link
weight is the number of instances of grooming of each monkey by each other during the
period of observation. The network has 16 vertices and 69 links with link weights ranging
from 1 to 49.

Newman has illuminated its community structure by weighted GN algorithm (See Fig.2
(b) in [30]). Here we test Potts model and WEO algorithm in Rhesus monkey network. Two
algorithms have been applied 20 times to get the communities. Their precision measured
by similarity function are: 0.95(Potts) and 1.00(WEO) respectively. The final community
structures are shown in Fig.7. Fig.7(a) shows the result gotten by Potts model algorithm.
The network is partitioned into 4 groups. Its Qw is 0.23. By WEO algorithm, the network is
divided into three communities(A, C and D). Firstly, rhesus monkey network is partitioned
into two groups(A and B), then group B is divided into two smaller groups (Fig.7), and the
max weighted modularity Qw is 0.244. Qw for partition (4 groups) in [30] gotten by GN
method is 0.12. We have applied WEO algorithm further and have divided group A and D
into two smaller groups. The community structures gotten by Potts and WEO algorithm are
different from the results gotten by GN methods. The similarity of these communities given
by similarity function S are: 0.65(WEO vs. Potts), 0.22(WEO vs. GN), and 0.36(Potts vs.
GN). By the detailed investigation, it could be found that results gotten by WEO and Potts
model methods accord more details of the known organization of these monkeys.

From the record by Sade[29], Male 006 had been dominant in group since at least 1960.
Male R006 had been solitary in 1962, and joined this group in early 1963. R006 replaced
006 as dominant male in the fall of 1963. Based on the investigation of cliques, the following
details can be known. The dominant male 066 was co-cliqual with the first and second
dominant females. EC, a 4-year-old male, is co-cliqual with his mother AC and sister DL.
The 4 multi-cliqual monkeys, 065, 004, AC and DL, were the 4 highest ranking females
and they formed the core of the grooming network. (This can be reflected by community
A.) EZ occurs only in his brother ER’s clique. CN , the adult male castrate, is co-cliqual
with his mother and sister, overlapped more extensively with the cliques containing the
other natal males (community D can show this detail), and might link their clique to the
main group. R006, the new-natal male, at last did not clique with the dominant and third
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Figure 7: (a)Community structure of rhesus monkeys network gotten by Potts model. It is
the result occurs with maximum probability. (b) Groups gotten by WEO algorithm. DL
and EC were AC’s offspring, CY and KE were 022’s offspring, and EZ and ER were
brothers.

ranking females, 065 and AC and AC’s son EC. (This can be reflected by community C.)
In conclusion, the dominant male 066, was integrated into the core with the females. The
new male, R006, was distantly attached to the core of females. one sub-adult male, EC, was
still integrated into his genealogy. The other natal males formed a distinct sub-group. CN ,
the castrate, was intermediate in his position, which overlapped that of the natal males and
the female core. The community structure found by WEO algorithm can illuminate above
details well. This example suggests that WEO algorithm is effective at finding community
structure in weighted networks.

4 Concluding Remarks

In this paper, we focus on the identification of community structure in weighted networks.
When link weight is taken into account, the closeness of relations among the nodes in a
group should be characterized both by link and link weight. Weighted modularity Qw should
be taken as the criteria for partition of communities. A brief overview of some partition
algorithm is given including the introduction of local variable λw

i of weighted network in the
external optimization process. In addition, we review the methods to evaluate accuracy and
precision of different algorithms and present similarity function S, a measurement to quantify
the difference of different communities. In weighted ad hoc networks, we study the influence
of weight on the process of detecting community structure and find that the change of link
weight can affect the accuracy and precision of algorithms. When community structure is
dominated by topological linkage, GN algorithm works better than other algorithms. But
for dense networks, when link weight plays more important rule in network properties,
Potts model and WEO algorithm works better to get the correct communities. At last,
we use WEO algorithm to Rhesus monkey network. The results show that community
identification with weighted modularity Qw and WEO algorithm gives better understanding
for real networks.
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From these investigations, we could find that the role of weight on the weighted networks
could be investigated by studying the effect of weight on the community structure. For
weighted networks, the disturbing of distribution or matching between weights and edges
should have some important effects on community structure. So the community structure
in networks should be a suitable property for investigating the role of weight.
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